SYNTHESIS OF NATURALISTIC VEHICLE DRIVING CYCLES USING THE MARKOV CHAIN MONTE CARLO METHOD

被引:9
|
作者
Puchalski, Andrzej [1 ]
Komorska, Iwona [1 ]
Slezak, Marcin [2 ]
Niewczas, Andrzej [2 ]
机构
[1] Kazimierz Pulaski Univ Technol Radom, Dept Mech Engn, Malczewskiego 29, PL-26600 Radom, Poland
[2] Motor Transport Inst, Jagiellonska 80, PL-03301 Warsaw, Poland
关键词
naturalistic vehicle driving cycles; synthesis of driving cycles; Markov models; Monte Carlo simulation; SPEED;
D O I
10.17531/ein.2020.2.14
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulation methods commonly used throughout the design and verification process of various types of motor vehicles require development of naturalistic driving cycles. Optimization of parameters, testing and gradual increase in the degree of autonomy of vehicles is not possible based on standard driving cycles. Ensuring representativeness of synthesized time series based on collected databases requires algorithms using techniques based on stochastic and statistical models. A synthesis technique combining the MCMC method and multifractal analysis has been proposed and verified. The method allows simple determination of the speed profile compared to classic frequency analysis.
引用
收藏
页码:316 / 322
页数:7
相关论文
共 50 条
  • [21] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Fattahi, Hadi
    Ilghani, Nastaran Zandy
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (03) : 2609 - 2618
  • [22] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Hadi Fattahi
    Nastaran Zandy Ilghani
    Geotechnical and Geological Engineering, 2020, 38 : 2609 - 2618
  • [23] Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method
    Pereyra, Marcelo
    Mieles, Luis Vargas
    Zygalakis, Konstantinos C.
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (02): : 905 - 935
  • [24] Using Markov Chain Monte Carlo to Play Trivia
    Deutch, Daniel
    Greenshpan, Ohad
    Kostenko, Boris
    Milo, Tova
    IEEE 27TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2011), 2011, : 1308 - 1311
  • [25] Pairwise clustering using a Monte Carlo Markov Chain
    Stosic, Borko D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2373 - 2382
  • [26] Segmentation Using Improved Markov Chain Monte Carlo
    Wang, Xiangrong
    Wang, Ming
    Pei, JiaLi
    2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 2, 2011, : 172 - 175
  • [27] Alignment and correspondence using Markov Chain Monte Carlo
    Moss, S
    Hancock, ER
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 928 - 931
  • [28] The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo
    Betancourt, Michael
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [29] Markov Chain Monte Carlo Method without Detailed Balance
    Suwa, Hidemaro
    Todo, Synge
    PHYSICAL REVIEW LETTERS, 2010, 105 (12)
  • [30] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467