Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method

被引:21
|
作者
Pereyra, Marcelo [1 ,2 ]
Mieles, Luis Vargas [1 ,2 ,3 ]
Zygalakis, Konstantinos C. [2 ,3 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Bayes Ctr, Maxwell Inst Math Sci, Edinburgh EH8 9BT, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2020年 / 13卷 / 02期
关键词
mathematical imaging; inverse problems; Bayesian inference; Markov chain Monte Carlo methods; proximal algorithms; MEAN-SQUARE; LANGEVIN; REGULARIZATION; OPTIMIZATION; ALGORITHM; NOISE; STIFF;
D O I
10.1137/19M1283719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation [A. Abdulle, I. Aimuslimani, and G. Vilmart, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 937-964] that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimization methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and l(1)-type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean-square estimation errors at equal computational budget.
引用
下载
收藏
页码:905 / 935
页数:31
相关论文
共 50 条
  • [1] Proximal Markov chain Monte Carlo algorithms
    Marcelo Pereyra
    Statistics and Computing, 2016, 26 : 745 - 760
  • [2] Proximal Markov chain Monte Carlo algorithms
    Pereyra, Marcelo
    STATISTICS AND COMPUTING, 2016, 26 (04) : 745 - 760
  • [3] Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo
    Wu, Haiyong
    Chen, Geng
    Yang, Zhongxue
    Shen, Dinggang
    Yap, Pew-Thian
    COMPUTATIONAL DIFFUSION MRI, 2016, : 121 - 130
  • [4] ACCELERATING MARKOV CHAIN MONTE CARLO WITH ACTIVE SUBSPACES
    Constantine, Paul G.
    Kent, Carson
    Bui-Thanh, Tan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A2779 - A2805
  • [5] Explicit error bounds for Markov chain Monte Carlo
    Rudolf, D.
    DISSERTATIONES MATHEMATICAE, 2012, (485) : 5 - +
  • [6] Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆
    Hunt-Smith, N. T.
    Melnitchouk, W.
    Ringer, F.
    Sato, N.
    Thomas, A. W.
    White, M. J.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 296
  • [7] Decoding Fingerprints Using the Markov Chain Monte Carlo Method
    Furon, Teddy
    Guyader, Arnaud
    Cerou, Frederic
    2012 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2012, : 187 - 192
  • [8] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74
  • [9] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [10] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934