Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method

被引:21
|
作者
Pereyra, Marcelo [1 ,2 ]
Mieles, Luis Vargas [1 ,2 ,3 ]
Zygalakis, Konstantinos C. [2 ,3 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Bayes Ctr, Maxwell Inst Math Sci, Edinburgh EH8 9BT, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2020年 / 13卷 / 02期
关键词
mathematical imaging; inverse problems; Bayesian inference; Markov chain Monte Carlo methods; proximal algorithms; MEAN-SQUARE; LANGEVIN; REGULARIZATION; OPTIMIZATION; ALGORITHM; NOISE; STIFF;
D O I
10.1137/19M1283719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation [A. Abdulle, I. Aimuslimani, and G. Vilmart, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 937-964] that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimization methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and l(1)-type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean-square estimation errors at equal computational budget.
引用
下载
收藏
页码:905 / 935
页数:31
相关论文
共 50 条
  • [21] Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo
    Heng, Qiang
    Zhou, Hua
    Chi, Eric C.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 938 - 949
  • [22] A flexible particle Markov chain Monte Carlo method
    Eduardo F. Mendes
    Christopher K. Carter
    David Gunawan
    Robert Kohn
    Statistics and Computing, 2020, 30 : 783 - 798
  • [23] Markov chain Monte Carlo method and its application
    Brooks, SP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1998, 47 (01) : 69 - 100
  • [24] A flexible particle Markov chain Monte Carlo method
    Mendes, Eduardo F.
    Carter, Christopher K.
    Gunawan, David
    Kohn, Robert
    STATISTICS AND COMPUTING, 2020, 30 (04) : 783 - 798
  • [25] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [26] WORD SEGMENTATION BASED ON HIDDEN MARKOV MODEL USING MARKOV CHAIN MONTE CARLO METHOD
    Fukuda, Takuya
    Miura, Takao
    ICAART 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, 2009, : 123 - +
  • [27] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Fattahi, Hadi
    Ilghani, Nastaran Zandy
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (03) : 2609 - 2618
  • [28] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Hadi Fattahi
    Nastaran Zandy Ilghani
    Geotechnical and Geological Engineering, 2020, 38 : 2609 - 2618
  • [29] Using Markov Chain Monte Carlo to Play Trivia
    Deutch, Daniel
    Greenshpan, Ohad
    Kostenko, Boris
    Milo, Tova
    IEEE 27TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2011), 2011, : 1308 - 1311
  • [30] Pairwise clustering using a Monte Carlo Markov Chain
    Stosic, Borko D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2373 - 2382