Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method

被引:21
|
作者
Pereyra, Marcelo [1 ,2 ]
Mieles, Luis Vargas [1 ,2 ,3 ]
Zygalakis, Konstantinos C. [2 ,3 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Bayes Ctr, Maxwell Inst Math Sci, Edinburgh EH8 9BT, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2020年 / 13卷 / 02期
关键词
mathematical imaging; inverse problems; Bayesian inference; Markov chain Monte Carlo methods; proximal algorithms; MEAN-SQUARE; LANGEVIN; REGULARIZATION; OPTIMIZATION; ALGORITHM; NOISE; STIFF;
D O I
10.1137/19M1283719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation [A. Abdulle, I. Aimuslimani, and G. Vilmart, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 937-964] that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimization methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and l(1)-type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean-square estimation errors at equal computational budget.
引用
下载
收藏
页码:905 / 935
页数:31
相关论文
共 50 条
  • [31] Segmentation Using Improved Markov Chain Monte Carlo
    Wang, Xiangrong
    Wang, Ming
    Pei, JiaLi
    2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 2, 2011, : 172 - 175
  • [32] Alignment and correspondence using Markov Chain Monte Carlo
    Moss, S
    Hancock, ER
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 928 - 931
  • [33] The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo
    Betancourt, Michael
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [34] Markov Chain Monte Carlo Method without Detailed Balance
    Suwa, Hidemaro
    Todo, Synge
    PHYSICAL REVIEW LETTERS, 2010, 105 (12)
  • [35] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [36] A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
    Jasra, Ajay
    Kamatani, Kengo
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2018, 8 (01) : 61 - 73
  • [37] A Markov chain Monte Carlo method for the groundwater inverse problem
    Lu, ZM
    Higdon, D
    Zhang, DX
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 1273 - 1283
  • [38] Markov chain Monte Carlo method for tracking myocardial borders
    Janiczek, R
    Ray, N
    Acton, ST
    Roy, RJ
    French, BA
    Epstein, FH
    Computational Imaging III, 2005, 5674 : 211 - 218
  • [39] An evaluation of a Markov chain monte carlo method for the Rasch model
    Kim, SH
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2001, 25 (02) : 163 - 176
  • [40] An Adaptive Markov Chain Monte Carlo Method for GARCH Model
    Takaishi, Tetsuya
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1424 - 1434