A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm

被引:20
|
作者
Yang, Miin-Shen [1 ]
Chang-Chien, Shou-Jen [1 ]
Nataliani, Yessica [1 ,2 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taiwan
[2] Satya Wacana Christian Univ, Dept Informat Syst, Salatiga 50711, Indonesia
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Clustering; fuzzy clustering; possibilistic clustering; fuzzy C-means (FCM); possibilistic C-means (PCM); fully-unsupervised PCM (FU-PCM);
D O I
10.1109/ACCESS.2018.2884956
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In 1993, Krishnapuram and Keller first proposed possibilistic C-means (PCM) clustering by relaxing the constraint in fuzzy C-means of which memberships for a data point across classes sum to 1. The PCM algorithm tends to produce coincident clusters that can be a merit of PCM as a good mode-seeking algorithm, and so various extensions of PCM had been proposed in the literature. However, the performance of PCM and its extensions heavily depends on initializations and parameters selection with a number of clusters to be given a priori. In this paper, we propose a novel PCM algorithm, termed a fully unsupervised PCM (FU-PCM), without any initialization and parameter selection that can automatically find a good number of clusters. We start by constructing a generalized framework for PCM clustering that can be a generalization of most existing PCM algorithms. Based on the generalized PCM framework, we propose the new type FU-PCM so that the proposed FU-PCM algorithm is free of parameter selection and initializations without a given number of clusters. That is, the FU-PCM becomes a FU-PCM clustering algorithm. Comparisons between the proposed FU-PCM and other existing methods are made. The computational complexity of the FU-PCM algorithm is also analyzed. Some numerical data and real data sets are used to show these good aspects of FU-PCM. Experimental results and comparisons actually demonstrate the proposed FU-PCM is an effective parameter-free clustering algorithm that can also automatically find the optimal number of clusters.
引用
收藏
页码:78308 / 78320
页数:13
相关论文
共 50 条
  • [21] Kernel Approach to Possibilistic C-Means Clustering
    Rhee, Frank Chung-Hoon
    Choi, Kil-Soo
    Choi, Byung-In
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (03) : 272 - 292
  • [22] Sparse possibilistic c-means clustering with Lasso
    Yang, Miin-Shen
    Benjamin, Josephine B. M.
    [J]. PATTERN RECOGNITION, 2023, 138
  • [23] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    [J]. Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [24] Improved possibilistic C-means clustering algorithms
    Zhang, JS
    Leung, YW
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (02) : 209 - 217
  • [25] Weighted possibilistic c-means clustering algorithms
    Schneider, A
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 176 - 180
  • [26] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    [J]. SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [27] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    [J]. ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377
  • [28] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Yukihiro Hamasuna
    Yasunori Endo
    Sadaaki Miyamoto
    [J]. Soft Computing, 2010, 14 : 487 - 494
  • [29] Possibilistic Rough Fuzzy C-Means Algorithm in Data Clustering and Image Segmentation
    Tripathy, B. K.
    Tripathy, Anurag
    Rajulu, Kosireddy Govinda
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 981 - 986
  • [30] A self-tuning version for the possibilistic fuzzy c-means clustering algorithm
    Naghi, Mirtill-Boglarka
    Kovacs, Levente
    Szilagyi, Laszlo
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,