CONSTRUCTING KAHLER-RICCI SOLITONS FROM SASAKI-EINSTEIN MANIFOLDS

被引:0
|
作者
Futaki, Akito [1 ]
Wang, Mu-Tao [2 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
Ricci soliton; Sasaki-Einstein manifold; toric Fano manifold; METRICS; GEOMETRY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct gradient Kahler-Ricci solitons on Ricci-flat Kahler cone manifolds and on line bundles over toric Fano manifolds. Certain shrinking and expanding solitons are pasted together to form eternal solutions of the Ricci flow. The method we employ is the Calabi ansatz over Sasaki-Einstein manifolds, and the results generalize constructions of Cao and Feldman-Ilmanen-Knopf.
引用
收藏
页码:33 / 52
页数:20
相关论文
共 50 条
  • [1] Sasaki-Einstein space T1,1, transverse Kahler-Ricci flow and Sasaki-Ricci soliton
    Visinescu, Mihai
    [J]. 32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [2] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [3] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [4] Transverse Kahler-Ricci Solitons of Five-Dimensional Sasaki-Einstein Spaces Yp,q and T1,1
    Visinescu, Mihai
    [J]. SYMMETRY-BASEL, 2020, 12 (03):
  • [5] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [6] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [7] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    [J]. ADVANCES IN MATHEMATICS, 2019, 357
  • [8] Fano Manifolds with Weak almost Kahler-Ricci Solitons
    Wang, Feng
    Zhu, Xiaohua
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) : 2437 - 2464
  • [9] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    [J]. ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094
  • [10] Uniqueness of Kahler-Ricci solitons
    Tian, G
    Zhu, XH
    [J]. ACTA MATHEMATICA, 2000, 184 (02) : 271 - 305