CONSTRUCTING KAHLER-RICCI SOLITONS FROM SASAKI-EINSTEIN MANIFOLDS

被引:0
|
作者
Futaki, Akito [1 ]
Wang, Mu-Tao [2 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
Ricci soliton; Sasaki-Einstein manifold; toric Fano manifold; METRICS; GEOMETRY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct gradient Kahler-Ricci solitons on Ricci-flat Kahler cone manifolds and on line bundles over toric Fano manifolds. Certain shrinking and expanding solitons are pasted together to form eternal solutions of the Ricci flow. The method we employ is the Calabi ansatz over Sasaki-Einstein manifolds, and the results generalize constructions of Cao and Feldman-Ilmanen-Knopf.
引用
收藏
页码:33 / 52
页数:20
相关论文
共 50 条