Fractal interpolation surfaces derived from Fractal interpolation functions

被引:54
|
作者
Bouboulis, P. [1 ]
Dalla, L.
机构
[1] Univ Athens, Dept Informat Telecommun Telecommun & Signal P, GR-15784 Athens, Greece
[2] Univ Athens, Dept Math Mathemat Anal, GR-15784 Athens, Greece
关键词
Fractal interpolation functions; Fractal interpolation surfaces; box counting dimension; Fractals; smooth fractal surfaces;
D O I
10.1016/j.jmaa.2007.01.112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the construction of Fractal Interpolation Functions, a new construction of Fractal Interpolation Surfaces on arbitrary data is presented and some interesting properties of them are proved. Finally, a lower bound of their box counting dimension is provided. (c) 2007 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:919 / 936
页数:18
相关论文
共 50 条
  • [21] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [22] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [23] HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    ELTON, J
    HARDIN, D
    MASSOPUST, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) : 1218 - 1242
  • [24] Resampling and reconstruction with fractal interpolation functions
    Price, JR
    Hayes, MH
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (09) : 228 - 230
  • [25] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [26] Generalization of Hermite functions by fractal interpolation
    Navascués, MA
    Sebastián, MV
    JOURNAL OF APPROXIMATION THEORY, 2004, 131 (01) : 19 - 29
  • [27] Energy and Laplacian of fractal interpolation functions
    LI Xiao-hui
    RUAN Huo-jun
    Applied Mathematics:A Journal of Chinese Universities, 2017, 32 (02) : 201 - 210
  • [28] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [29] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [30] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, : 3197 - 3226