Simulation of particle-vortex interactions in the modified chemical vapor deposition process

被引:10
|
作者
Cheung, Catherine K. W.
Haley, Daniel
Fletcher, David F.
Barton, Geoff W.
McNamara, Pam
机构
[1] Univ Sydney, Opt Fiber Technol Ctr, Eveleigh, NSW 1430, Australia
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Sydney, Opt Fibre Technol Ctr, Eveleigh, NSW 1430, Australia
[4] Univ Sydney, Australian Key Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
diffusion and transport; optical fibers; chemical vapor deposition; scanning electron microscopy; modeling and simulation; nanoparticles; nano-clusters; silica;
D O I
10.1016/j.jnoncrysol.2007.06.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A computational fluid dynamics model is developed to examine deposition trends in the modified chemical vapor deposition (MCVD) process used in the fabrication of silica optical fibers. The model predicts the flow-field in a rotating tube and the location of the reaction zone. Silica particles generated in this zone are treated as being injected into the fluid dynamic system at this point and their trajectories calculated, taking into account drag and thermophoretic forces. The presence of double vortices in the flow was shown to play an important role in the determination of the particle deposition flux on the wall of the substrate tube, with the tangential velocity in the vortex zones responsible for particles being dragged away from the wall. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4066 / 4075
页数:10
相关论文
共 50 条
  • [1] Simulation of particle transport and deposition in the modified chemical vapor deposition process
    Cheung, Catherine K. W.
    Fletcher, David F.
    Barton, Geoff W.
    McNamara, Pam
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (4-5) : 327 - 334
  • [2] Graphite dust deposition on HTGR steam generator: Effects of particle-wall and particle-vortex interactions
    Wei, Mingzhe
    Zhang, Yiyang
    Luo, Xiaowei
    Li, Xiaowei
    Wu, Xinxin
    Zhang, Zhengming
    NUCLEAR ENGINEERING AND DESIGN, 2018, 330 : 217 - 224
  • [3] Numerical investigation of particle size distribution, particle transport and deposition in a modified chemical vapor deposition process
    Liu, Wei
    Liu, Daoyin
    Zhang, Yingjuan
    Li, Bo
    POWDER TECHNOLOGY, 2022, 407
  • [4] CFD simulation of laser enhanced modified chemical vapor deposition process
    Hafiz, O. K. Mohammed
    Singh, Anugrah
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (6A): : 593 - 602
  • [5] Ubiquity of particle-vortex interactions in turbulent counterflow of superfluid helium
    Svancara, P.
    Duda, D.
    Hrubcova, P.
    Rotter, M.
    Skrbek, L.
    La Mantia, M.
    Durozoy, E.
    Diribarne, P.
    Rousset, B.
    Bourgoin, M.
    Gibert, M.
    JOURNAL OF FLUID MECHANICS, 2021, 911
  • [6] Three-dimensional analysis of particle deposition for the modified chemical vapor deposition (MCVD) process
    Lin, Y.T.
    Choi, M.
    Greif, R.
    Journal of Heat Transfer, 1992, 114 (03): : 735 - 742
  • [8] A Study of Heat Transfer and Particle Motion Relative to the Modified Chemical Vapor Deposition Process
    Choi, M.
    Greif, R.
    Baum, H. R.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1989, 111 (1-4): : 1031 - 1037
  • [9] A 3-DIMENSIONAL ANALYSIS OF PARTICLE DEPOSITION FOR THE MODIFIED CHEMICAL VAPOR-DEPOSITION (MCVD) PROCESS
    LIN, YT
    CHOI, M
    GREIF, R
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1992, 114 (03): : 735 - 742
  • [10] A study of flow, heat transfer and particle deposition during the modified chemical vapor deposition (MCVD) process
    Chang, CL
    Lin, YT
    JOURNAL OF MATERIALS PROCESSING & MANUFACTURING SCIENCE, 1995, 4 (01): : 3 - 16