Simulation of particle-vortex interactions in the modified chemical vapor deposition process

被引:10
|
作者
Cheung, Catherine K. W.
Haley, Daniel
Fletcher, David F.
Barton, Geoff W.
McNamara, Pam
机构
[1] Univ Sydney, Opt Fiber Technol Ctr, Eveleigh, NSW 1430, Australia
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Sydney, Opt Fibre Technol Ctr, Eveleigh, NSW 1430, Australia
[4] Univ Sydney, Australian Key Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
diffusion and transport; optical fibers; chemical vapor deposition; scanning electron microscopy; modeling and simulation; nanoparticles; nano-clusters; silica;
D O I
10.1016/j.jnoncrysol.2007.06.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A computational fluid dynamics model is developed to examine deposition trends in the modified chemical vapor deposition (MCVD) process used in the fabrication of silica optical fibers. The model predicts the flow-field in a rotating tube and the location of the reaction zone. Silica particles generated in this zone are treated as being injected into the fluid dynamic system at this point and their trajectories calculated, taking into account drag and thermophoretic forces. The presence of double vortices in the flow was shown to play an important role in the determination of the particle deposition flux on the wall of the substrate tube, with the tangential velocity in the vortex zones responsible for particles being dragged away from the wall. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4066 / 4075
页数:10
相关论文
共 50 条
  • [31] THE HEAT-TRANSFER PROBLEM FOR THE MODIFIED CHEMICAL VAPOR-DEPOSITION PROCESS
    CHOI, M
    BAUM, HR
    GREIF, R
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1987, 109 (03): : 642 - 646
  • [32] REPRODUCIBILITY OF OPTICAL FIBERS PREPARED BY A MODIFIED CHEMICAL VAPOR-DEPOSITION PROCESS
    DIMARCELLO, FV
    WILLIAMS, JC
    BELL SYSTEM TECHNICAL JOURNAL, 1978, 57 (06): : 1723 - 1734
  • [33] AN ANALYSIS OF THE EFFECT OF THE SOLID LAYER FOR THE MODIFIED CHEMICAL VAPOR-DEPOSITION PROCESS
    LIN, YT
    CHUNGLI
    CHOI, M
    GREIF, R
    WARME UND STOFFUBERTRAGUNG-THERMO AND FLUID DYNAMICS, 1993, 28 (04): : 169 - 176
  • [34] NONSYMMETRICAL MODIFIED CHEMICAL VAPOR-DEPOSITION (N-MCVD) PROCESS
    DOUPOVEC, J
    YARIN, AL
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1991, 9 (06) : 695 - 700
  • [35] Finite Element Simulation of Effects of Process Parameters on Deposition Rate of SiC by Chemical Vapor Deposition
    Sun, Guodong
    Li, Hejun
    Zhang, Shouyang
    Fu, Qiangang
    Cao, Wei
    Jiao, Yanqiong
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 635 - 640
  • [36] Modeling of chemical vapor deposition in a fluidized bed reactor based on discrete particle simulation
    Czok, G
    Ye, M
    Kuipers, JAMH
    Werther, J
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2005, 3
  • [37] Effects of Process Variables on TiN Particle Formation during Metallorganic Chemical Vapor Deposition
    Na, Jeonggil
    Kim, Taesung
    Choi, Jae-Boong
    Kim, Young-Jin
    Shin, Yong-Hyeon
    Yun, Ju-Young
    Kang, Sang-Woo
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (07) : H248 - H252
  • [38] SOOT-OVERCLADDING PROCESS FOR ENLARGING MODIFIED CHEMICAL-VAPOR-DEPOSITION PREFORMS
    IHALAINEN, H
    KURKI, J
    OPTICAL ENGINEERING, 1995, 34 (09) : 2538 - 2542
  • [39] ANALYSIS OF BUOYANCY AND TUBE ROTATION RELATIVE TO THE MODIFIED CHEMICAL VAPOR-DEPOSITION PROCESS
    CHOI, M
    LIN, YT
    GREIF, R
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1990, 112 (04): : 1063 - 1069
  • [40] Analysis of unsteady heat and mass transfer during the modified chemical vapor deposition process
    Park, K.S.
    Choi, M.
    Journal of Heat Transfer, 1998, 120 (04): : 858 - 864