Simulation of particle-vortex interactions in the modified chemical vapor deposition process

被引:10
|
作者
Cheung, Catherine K. W.
Haley, Daniel
Fletcher, David F.
Barton, Geoff W.
McNamara, Pam
机构
[1] Univ Sydney, Opt Fiber Technol Ctr, Eveleigh, NSW 1430, Australia
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Sydney, Opt Fibre Technol Ctr, Eveleigh, NSW 1430, Australia
[4] Univ Sydney, Australian Key Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
diffusion and transport; optical fibers; chemical vapor deposition; scanning electron microscopy; modeling and simulation; nanoparticles; nano-clusters; silica;
D O I
10.1016/j.jnoncrysol.2007.06.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A computational fluid dynamics model is developed to examine deposition trends in the modified chemical vapor deposition (MCVD) process used in the fabrication of silica optical fibers. The model predicts the flow-field in a rotating tube and the location of the reaction zone. Silica particles generated in this zone are treated as being injected into the fluid dynamic system at this point and their trajectories calculated, taking into account drag and thermophoretic forces. The presence of double vortices in the flow was shown to play an important role in the determination of the particle deposition flux on the wall of the substrate tube, with the tangential velocity in the vortex zones responsible for particles being dragged away from the wall. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4066 / 4075
页数:10
相关论文
共 50 条
  • [21] HEAT TRANSFER PROBLEM FOR THE MODIFIED CHEMICAL VAPOR DEPOSITION PROCESS.
    Choi, M.
    Baum, H.R.
    Greif, R.
    Journal of Heat Transfer, 1987, 109 (03): : 642 - 646
  • [22] An analysis of multicomponent aerosol dynamics for the Modified Chemical Vapor Deposition process
    Lee, B.W.
    Park, K.S.
    Choi, M.
    Journal of Aerosol Science, 1998, 29 (SUPPL 1):
  • [23] Nonsymmetrical modified chemical vapor deposition (N-MCVD) process
    Doupovec, Juraj
    Yarin, Alexander L.
    Journal of Lightwave Technology, 1991, 9 (06): : 695 - 700
  • [24] AN OVERVIEW OF THE MODIFIED CHEMICAL VAPOR-DEPOSITION (MCVD) PROCESS AND PERFORMANCE
    NAGEL, SR
    MACCHESNEY, JB
    WALKER, KL
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (04) : 459 - 476
  • [25] CONJUGATE HEAT-TRANSFER AND PARTICLE DEPOSITION IN THE MODIFIED CHEMICAL-VAPOR-DEPOSITION PROCESS - EFFECTS OF TORCH SPEED AND SOLID LAYER
    PARK, KS
    CHOI, M
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (11) : 1593 - 1603
  • [26] Numerical simulation of chemical vapor deposition process for fabrication of SiC coating
    C/C Composites Technology Research Center, Northwestern Polytechnical University, Xi'an 710072, China
    Hsi An Chiao Tung Ta Hsueh, 2007, 9 (1070-1074):
  • [27] Numerical Simulation of GaN Growth in a Metalorganic Chemical Vapor Deposition Process
    Meng, Jiandong
    Jaluria, Yogesh
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (06):
  • [28] Modeling and Simulation of a Chemical Vapor Deposition
    Geiser, J.
    Arab, M.
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [29] Numerical simulation on modified chemical vapor deposition (MCVD) thermal flow field
    da Silva, Rubens Cavalcante
    Duda de Morais, Paulo Jorge
    Carvalho, Andre
    de Rossi, Wagner
    Motta, Claudio Costa
    2022 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC), 2022,
  • [30] A Modified Moving Horizon Estimator for In Situ Sensing of a Chemical Vapor Deposition Process
    Xiong, Rentian
    Grover, Martha Anne
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (05) : 1228 - 1235