The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

被引:42
|
作者
Pavlovic, Milena [1 ,2 ,3 ]
Scheffer, Lonneke [1 ,2 ]
Motwani, Keshav [4 ]
Kanduri, Chakravarthi [2 ]
Kompova, Radmila [2 ]
Vazov, Nikolay [6 ]
Waagan, Knut [6 ]
Bernal, Fabian L. M. [6 ]
Costa, Alexandre Almeida [7 ]
Corrie, Brian [8 ]
Akbar, Rahmad [9 ,10 ]
Al Hajj, Ghadi S. [1 ]
Balaban, Gabriel [1 ,2 ]
Brusko, Todd M. [4 ,5 ]
Chernigovskaya, Maria [9 ,10 ]
Christley, Scott [11 ]
Cowell, Lindsay G. [12 ]
Frank, Robert [9 ,10 ]
Grytten, Ivar [1 ,2 ]
Gundersen, Sveinung [2 ]
Haff, Ingrid Hobaek [12 ]
Hovig, Eivind [1 ,2 ,15 ]
Hsieh, Ping-Han [16 ]
Klambauer, Gunter [13 ,14 ]
Kuijjer, Marieke L. [16 ,17 ]
Lund-Andersen, Christin [15 ,18 ]
Martini, Antonio [1 ]
Minotto, Thomas [12 ]
Pensar, Johan [12 ]
Rand, Knut [1 ,2 ]
Riccardi, Enrico [1 ,2 ]
Robert, Philippe A. [9 ,10 ]
Rocha, Artur [7 ]
Slabodkin, Andrei [9 ,10 ]
Snapkov, Igor [9 ,10 ]
Sollid, Ludvig M. [3 ,9 ,10 ]
Titov, Dmytro [2 ]
Weber, Cedric R. [19 ]
Widrich, Michael [13 ,14 ]
Yaari, Gur [20 ]
Greiff, Victor [9 ,10 ]
Sandve, Geir Kjetil [1 ,2 ,3 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
[2] Univ Oslo, Ctr Bioinformat, Oslo, Norway
[3] Univ Oslo, KG Jebsen Ctr Coeliac Dis Res, Inst Clin Med, Oslo, Norway
[4] Univ Florida, Diabet Inst, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL USA
[5] Univ Florida, Diabet Inst, Coll Med, Dept Pediat, Gainesville, FL USA
[6] Univ Oslo, Univ Ctr Informat Technol, Oslo, Norway
[7] Inst Syst & Comp Engn Technol & Sci, Porto, Portugal
[8] Simon Fraser Univ, Biol Sci, Burnaby, BC, Canada
[9] Univ Oslo, Dept Immunol, Oslo, Norway
[10] Oslo Univ Hosp, Oslo, Norway
[11] UT Southwestern Med Ctr, Dept Populat & Data Sci, Lawton, OK USA
[12] Univ Oslo, Dept Math, Oslo, Norway
[13] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, Linz, Austria
[14] Johannes Kepler Univ Linz, Inst Machine Learning, LIT AI Lab, Linz, Austria
[15] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway
[16] Univ Oslo, Ctr Mol Med Norway NCMM, Nordic EMBL Partnership, Oslo, Norway
[17] Leiden Univ, Dept Pathol, Med Ctr, Leiden, Netherlands
[18] Inst Clin Med, Univ Oslo, Fac Med, Oslo, Norway
[19] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
[20] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CELL; DEEP; SIGNATURES; COMMUNITY; FEATURES; PLATFORM; TOOLKIT; BLOOD;
D O I
10.1038/s42256-021-00413-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
引用
收藏
页码:936 / +
页数:11
相关论文
共 50 条
  • [21] Adaptive immune receptor repertoire analysis
    Nature Reviews Methods Primers, 4 (1):
  • [22] Computational Analysis of B-Cell Receptor (BCR) Immune Repertoires with Abalign
    Wei, Jiachen
    Li, Junxian
    Zong, Fanjie
    Xiao, Zhi-Xiong
    Cao, Yang
    CURRENT PROTOCOLS, 2024, 4 (02):
  • [23] AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires
    Pradier, Melanie F.
    Prasad, Niranjani
    Chapfuwa, Paidamoyo
    Ghalebikesabi, Sahra
    Ilse, Maximilian
    Woodhouse, Steven
    Elyanow, Rebecca
    Zazo, Javier
    Hernandez, Javier Gonzalez
    Greissl, Julia
    Meeds, Edward
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 219, 2023, 219
  • [24] CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching
    Rognes, Torbjorn
    Scheffer, Lonneke
    Greiff, Victor
    Sandve, Geir Kjetil
    BIOINFORMATICS, 2022, 38 (17) : 4230 - 4232
  • [25] The Immune System Computes the State of the Body: Crowd Wisdom, Machine Learning, and Immune Cell Reference Repertoires Help Manage Inflammation
    Cohen, Irun R.
    Efroni, Sol
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [26] Machine learning in Ecosystem Informatics
    Dietterich, Thomas G.
    DISCOVERY SCIENCE, PROCEEDINGS, 2007, 4755 : 9 - +
  • [27] Machine learning in ecosystem Informatics
    Dietterich, Thomas G.
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2007, 4754 : 10 - +
  • [28] Machine learning for ecosystem services
    Willcock, Simon
    Martinez-Lopez, Javier
    Hooftman, Danny A. P.
    Bagstad, Kenneth J.
    Balbi, Stefano
    Marzo, Alessia
    Prato, Carlo
    Sciandrello, Saverio
    Signorello, Giovanni
    Voigt, Brian
    Villa, Ferdinando
    Bullock, James M.
    Athanasiadis, Ioannis N.
    ECOSYSTEM SERVICES, 2018, 33 : 165 - 174
  • [29] Publisher Correction: Adaptive immune receptor repertoire analysis
    Vanessa Mhanna
    Habib Bashour
    Khang Lê Quý
    Pierre Barennes
    Puneet Rawat
    Victor Greiff
    Encarnita Mariotti-Ferrandiz
    Nature Reviews Methods Primers, 4
  • [30] Echinoderms rely on rapidly evolving repertoires of immune receptor genes
    Buckley, Katherine
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2024, 64 : S67 - S67