Machine learning in Ecosystem Informatics

被引:0
|
作者
Dietterich, Thomas G. [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emerging field of Ecosystem Informatics applies methods from computer science and mathematics to address fundamental and applied problems in the ecosystem sciences. The ecosystem sciences are in the midst of a revolution driven by a combination of emerging technologies for improved sensing and the critical need for better science to help manage global climate change. This paper describes several initiatives at Oregon State University in ecosystem informatics. At the level of sensor technologies, this paper describes two projects: (a) wireless, battery-free sensor networks for forests and (b) rapid throughput automated arthropod population counting. At the level of data preparation and data cleaning, this paper describes the application of linear gaussian dynamic Bayesian networks to automated anomaly detection in temperature data streams. Finally, the paper describes two educational activities: (a) a summer institute in ecosystem informatics and (b) an interdisciplinary Ph.D. program in Ecosystem Informatics for mathematics, computer science, and the ecosystem sciences.
引用
收藏
页码:9 / +
页数:3
相关论文
共 50 条
  • [1] Machine learning in ecosystem Informatics
    Dietterich, Thomas G.
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2007, 4754 : 10 - +
  • [2] Machine Learning in Ecosystem Informatics and Sustainability
    Dietterich, Thomas G.
    [J]. 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 8 - 13
  • [3] Machine Learning and Ecosystem Informatics: Challenges and Opportunities
    Dietterich, Thomas G.
    [J]. ADVANCES IN MACHINE LEARNING, PROCEEDINGS, 2009, 5828 : 1 - 5
  • [4] Machine learning in polymer informatics
    Sha, Wuxin
    Li, Yan
    Tang, Shun
    Tian, Jie
    Zhao, Yuming
    Guo, Yaqing
    Zhang, Weixin
    Zhang, Xinfang
    Lu, Songfeng
    Cao, Yuan-Cheng
    Cheng, Shijie
    [J]. INFOMAT, 2021, 3 (04) : 353 - 361
  • [5] Informatics and machine learning to define the phenotype
    Basile, Anna Okula
    Ritchie, Marylyn DeRiggi
    [J]. EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2018, 18 (03) : 219 - 226
  • [6] Machine Learning and Imaging Informatics in Oncology
    Tseng, Huan-Hsin
    Wei, Lise
    Cu, Sunan
    Luo, Yi
    Ten Haken, Randall K.
    El Naqa, Issam
    [J]. ONCOLOGY, 2020, 98 (06) : 344 - 362
  • [7] Biomedical informatics with optimization and machine learning
    Huang, Shuai
    Zhou, Jiayu
    Wang, Zhangyang
    Ling, Qing
    Shen, Yang
    [J]. Eurasip Journal on Bioinformatics and Systems Biology, 2016, 2017 (01)
  • [8] A Machine Learning Tool for Materials Informatics
    Wang, Zhi-Lei
    Ogawa, Toshio
    Adachi, Yoshitaka
    [J]. ADVANCED THEORY AND SIMULATIONS, 2020, 3 (01)
  • [9] Energy Informatics Applicability; Machine Learning and Deep Learning
    Heghedus, Cristina
    Chakravorty, Antorweep
    Rong, Chunming
    [J]. 2018 IEEE/ACIS 3RD INTERNATIONAL CONFERENCE ON BIG DATA, CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (BCD 2018), 2018, : 97 - 101
  • [10] Machine learning for ecosystem services
    Willcock, Simon
    Martinez-Lopez, Javier
    Hooftman, Danny A. P.
    Bagstad, Kenneth J.
    Balbi, Stefano
    Marzo, Alessia
    Prato, Carlo
    Sciandrello, Saverio
    Signorello, Giovanni
    Voigt, Brian
    Villa, Ferdinando
    Bullock, James M.
    Athanasiadis, Ioannis N.
    [J]. ECOSYSTEM SERVICES, 2018, 33 : 165 - 174