The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

被引:42
|
作者
Pavlovic, Milena [1 ,2 ,3 ]
Scheffer, Lonneke [1 ,2 ]
Motwani, Keshav [4 ]
Kanduri, Chakravarthi [2 ]
Kompova, Radmila [2 ]
Vazov, Nikolay [6 ]
Waagan, Knut [6 ]
Bernal, Fabian L. M. [6 ]
Costa, Alexandre Almeida [7 ]
Corrie, Brian [8 ]
Akbar, Rahmad [9 ,10 ]
Al Hajj, Ghadi S. [1 ]
Balaban, Gabriel [1 ,2 ]
Brusko, Todd M. [4 ,5 ]
Chernigovskaya, Maria [9 ,10 ]
Christley, Scott [11 ]
Cowell, Lindsay G. [12 ]
Frank, Robert [9 ,10 ]
Grytten, Ivar [1 ,2 ]
Gundersen, Sveinung [2 ]
Haff, Ingrid Hobaek [12 ]
Hovig, Eivind [1 ,2 ,15 ]
Hsieh, Ping-Han [16 ]
Klambauer, Gunter [13 ,14 ]
Kuijjer, Marieke L. [16 ,17 ]
Lund-Andersen, Christin [15 ,18 ]
Martini, Antonio [1 ]
Minotto, Thomas [12 ]
Pensar, Johan [12 ]
Rand, Knut [1 ,2 ]
Riccardi, Enrico [1 ,2 ]
Robert, Philippe A. [9 ,10 ]
Rocha, Artur [7 ]
Slabodkin, Andrei [9 ,10 ]
Snapkov, Igor [9 ,10 ]
Sollid, Ludvig M. [3 ,9 ,10 ]
Titov, Dmytro [2 ]
Weber, Cedric R. [19 ]
Widrich, Michael [13 ,14 ]
Yaari, Gur [20 ]
Greiff, Victor [9 ,10 ]
Sandve, Geir Kjetil [1 ,2 ,3 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
[2] Univ Oslo, Ctr Bioinformat, Oslo, Norway
[3] Univ Oslo, KG Jebsen Ctr Coeliac Dis Res, Inst Clin Med, Oslo, Norway
[4] Univ Florida, Diabet Inst, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL USA
[5] Univ Florida, Diabet Inst, Coll Med, Dept Pediat, Gainesville, FL USA
[6] Univ Oslo, Univ Ctr Informat Technol, Oslo, Norway
[7] Inst Syst & Comp Engn Technol & Sci, Porto, Portugal
[8] Simon Fraser Univ, Biol Sci, Burnaby, BC, Canada
[9] Univ Oslo, Dept Immunol, Oslo, Norway
[10] Oslo Univ Hosp, Oslo, Norway
[11] UT Southwestern Med Ctr, Dept Populat & Data Sci, Lawton, OK USA
[12] Univ Oslo, Dept Math, Oslo, Norway
[13] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, Linz, Austria
[14] Johannes Kepler Univ Linz, Inst Machine Learning, LIT AI Lab, Linz, Austria
[15] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway
[16] Univ Oslo, Ctr Mol Med Norway NCMM, Nordic EMBL Partnership, Oslo, Norway
[17] Leiden Univ, Dept Pathol, Med Ctr, Leiden, Netherlands
[18] Inst Clin Med, Univ Oslo, Fac Med, Oslo, Norway
[19] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
[20] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CELL; DEEP; SIGNATURES; COMMUNITY; FEATURES; PLATFORM; TOOLKIT; BLOOD;
D O I
10.1038/s42256-021-00413-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
引用
收藏
页码:936 / +
页数:11
相关论文
共 50 条
  • [41] Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive immune Repertoires
    Miho, Enkelejda
    Yermanos, Alexander
    Weber, Cedric R.
    Berger, Christoph T.
    Reddy, Sai T.
    Greiff, Victor
    FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [42] Ovarian cancer is detectable from peripheral blood using machine learning over T-cell receptor repertoires
    Zuckerbrot-Schuldenfrei, Miriam
    Aviel-Ronen, Sarit
    Zilberberg, Alona
    Efroni, Sol
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [43] Adaptive machine learning algorithm for color image analysis and processing
    Celenk, Mehmet
    Robotics and Computer-Integrated Manufacturing, 1988, 4 (3-4): : 403 - 412
  • [44] Adaptive sequential machine learning
    Wilson, Craig
    Bu, Yuheng
    Veeravalli, Venugopal V.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (04): : 545 - 568
  • [45] Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes
    Toups, Connor
    Bommasani, Rishi
    Creel, Kathleen A.
    Bana, Sarah H.
    Jurafsky, Dan
    Liang, Percy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [46] The Bayesian optimist's guide to adaptive immune receptor repertoire analysis
    Olson, Branden J.
    Matsen, Frederick A.
    IMMUNOLOGICAL REVIEWS, 2018, 284 (01) : 148 - 166
  • [47] INTERNAL ACTIVITY IN THE IMMUNE-SYSTEM - ANALYSIS OF SPECIFICITY REPERTOIRES
    HOLMBERG, D
    COUTINHO, A
    SCANDINAVIAN JOURNAL OF IMMUNOLOGY, 1985, 22 (04) : 445 - 445
  • [48] Echidna: integrated simulations of single-cell immune receptor repertoires and transcriptomes
    Han, Jiami
    Masserey, Solene
    Shlesinger, Danielle
    Kuhn, Raphael
    Papadopoulou, Chrysa
    Agrafiotis, Andreas
    Kreiner, Victor
    Dizerens, Raphael
    Hong, Kai-Lin
    Weber, Cedric
    Greiff, Victor
    Oxenius, Annette
    Reddy, Sai T.
    Yermanos, Alexander
    Hutchins, Alison
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [49] Guidelines for reproducible analysis of adaptive immune receptor repertoire sequencing data
    Peres, Ayelet
    Klein, Vered
    Frankel, Boaz
    Lees, William
    Polak, Pazit
    Meehan, Mark
    Rocha, Artur
    Correia Lopes, Joao
    Yaari, Gur
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [50] Single-cell analysis of immune repertoires enabled COMMENT
    Schoenberger, Stephen P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (13)