Joint Inference of Microsatellite Mutation Models, Population History and Genealogies Using Transdimensional Markov Chain Monte Carlo

被引:39
|
作者
Wu, Chieh-Hsi [2 ]
Drummond, Alexei J. [1 ,2 ,3 ]
机构
[1] Univ Auckland, Dept Comp Sci, Auckland 1001, New Zealand
[2] Univ Auckland, Bioinformat Inst, Auckland 1001, New Zealand
[3] Univ Auckland, Allan Wilson Ctr Mol Ecol & Evolut, Auckland 1001, New Zealand
基金
美国国家科学基金会;
关键词
ELECTROPHORETICALLY DETECTABLE ALLELES; LIKELIHOOD APPROACH; BAYESIAN-INFERENCE; STEPWISE MUTATION; MIGRATION RATES; DNA-SEQUENCES; DROSOPHILA; EVOLUTION; REPEATS; TREES;
D O I
10.1534/genetics.110.125260
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular data to make coalescent and evolutionary inferences. Our implementation permits the application of existing non-parametric methods to microsatellite data. The implemented microsatellite models are based on the replication slippage mechanism and focus on three properties of microsatellite mutation: length dependency of mutation rate, mutational bias toward expansion or contraction, and number of repeat units changed in a single mutation event. We develop a new model that facilitates microsatellite model averaging and Bayesian model selection by transdimensional MCMC. With Bayesian model averaging, the posterior distributions of population history parameters are integrated across a set of microsatellite models and thus account for model uncertainty. Simulated data are used to evaluate our method in terms of accuracy and precision of theta estimation and also identification of the true mutation model. Finally we apply our method to a red colobus monkey data set as an example.
引用
收藏
页码:151 / U254
页数:27
相关论文
共 50 条
  • [31] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    [J]. HUMAN HEREDITY, 2015, 80 (03) : 113 - 113
  • [32] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [33] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    [J]. SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [34] Bayesian parameter inference for individual-based models using a Particle Markov Chain Monte Carlo method
    Kattwinkel, Mira
    Reichert, Peter
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 87 : 110 - 119
  • [35] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    [J]. IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [36] EFFICIENT MARKOV CHAIN MONTE CARLO INFERENCE IN COMPOSITE MODELS WITH SPACE ALTERNATING DATA AUGMENTATION
    Fevotte, C.
    Cappe, O.
    Cemgil, A. T.
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 221 - 224
  • [37] Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method
    Yang, ZH
    Rannala, B
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (07) : 717 - 724
  • [38] Markov chain Monte Carlo using an approximation
    Christen, JA
    Fox, C
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (04) : 795 - 810
  • [39] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    [J]. 4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [40] Fitting complex population models by combining particle filters with Markov chain Monte Carlo
    Knape, Jonas
    de Valpine, Perry
    [J]. ECOLOGY, 2012, 93 (02) : 256 - 263