Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method

被引:947
|
作者
Yang, ZH [1 ]
Rannala, B [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT INTEGRAT BIOL,BERKELEY,CA 94720
关键词
molecular phylogeny; Bayesian estimation; Markov Chain Monte Carlo; nucleotide substitution; birth-death process;
D O I
10.1093/oxfordjournals.molbev.a025811
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An improved Bayesian method is presented for estimating phylogenetic trees using DNA sequence data. The birth-death process with species sampling is used to specify the prior distribution of phylogenies and ancestral speciation times, and the posterior probabilities of phylogenies are used to estimate the maximum posterior probability (MAP) tree. Monte Carlo integration is used to integrate over the ancestral speciation times for particular trees. A Markov Chain Monte Carlo method is used to generate the set of trees with the highest posterior probabilities. Methods are described for an empirical Bayesian analysis, in which estimates of the speciation and extinction rates are used in calculating the posterior probabilities, and a hierarchical Bayesian analysis, in which these parameters are removed from the model by an additional integration. The Markov Chain Monte Carlo method avoids the requirement of our earlier method for calculating MAP trees to sum over all possible topologies (which limited the number of taxa in an analysis to about five). The methods are applied to analyze DNA sequences for nine species of primates, and the MAP tree, which is identical to a maximum-likelihood estimate of topology, has a probability of approximately 95%.
引用
下载
收藏
页码:717 / 724
页数:8
相关论文
共 50 条
  • [1] Bayesian phylogenetic inference via Markov chain Monte Carlo methods
    Mau, B
    Newton, MA
    Larget, B
    BIOMETRICS, 1999, 55 (01) : 1 - 12
  • [2] Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference
    Altekar, G
    Dwarkadas, S
    Huelsenbeck, JP
    Ronquist, F
    BIOINFORMATICS, 2004, 20 (03) : 407 - 415
  • [3] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [4] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [5] Bayesian inference of pit corrosion in prestressing strands using Markov Chain Monte Carlo method
    Lee, Jaebeom
    Jeon, Chi-Ho
    Shim, Chang-Su
    Lee, Young-Joo
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 74
  • [6] Phylogenetic inference for binary data on dendograms using Markov chain Monte Carlo
    Mau, B
    Newton, MA
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (01) : 122 - 131
  • [7] Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
    Wang, Liangliang
    Bouchard-Cote, Alexandre
    Doucet, Arnaud
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1362 - 1374
  • [8] Bayesian face recognition using a Markov chain Monte Carlo method
    Matsui, Atsushi
    Clippingdale, Simon
    Uzawa, Fumiki
    Matsumoto, Takashi
    NHK Laboratories Note, 2004, (487):
  • [9] On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
    Rabier, Charles-Elie
    Berry, Vincent
    Stoltz, Marnus
    Santos, Joao D.
    Wang, Wensheng
    Glaszmann, Jean-Christophe
    Pardi, Fabio
    Scornavacca, Celine
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (09)
  • [10] LAGGED COUPLINGS DIAGNOSE MARKOV CHAIN MONTE CARLO PHYLOGENETIC INFERENCE
    Kelly, Luke J.
    Ryder, Robin J.
    Clarte, Gregoire
    ANNALS OF APPLIED STATISTICS, 2023, 17 (02): : 1419 - 1443