Markov chain Monte Carlo exact inference for social networks

被引:12
|
作者
McDonald, John W. [1 ]
Smith, Peter W. F. [1 ]
Forster, Jonathan J. [1 ]
机构
[1] Univ Southampton, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
基金
英国经济与社会研究理事会;
关键词
adjacency matrices; exact conditional test; Markov chain Monte Carlo; metropolis-Hastings algorithm; reciprocity; triad census;
D O I
10.1016/j.socnet.2006.04.003
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
The uniformly most powerful unbiased test of reciprocity compares the observed number of mutual relations to its exact conditional distribution. Metropolis-Hastings algorithms have been proposed for generating from this distribution in order to perform Monte Carlo exact inference. Triad census statistics are often used to test for the presence of network group structure. We show how one of the proposed Metropolis-Hastings algorithms can be modified to generate from the conditional distribution of the triad census given the indegrees, the out-degrees and the number of mutual dyads. We compare the results of this algorithm with those obtained by using various approximations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条
  • [1] Markov Chain Monte Carlo for Exact Inference for Diffusions
    Sermaidis, Giorgos
    Papaspiliopoulos, Omiros
    Roberts, Gareth O.
    Beskos, Alexandros
    Fearnhead, Paul
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 294 - 321
  • [2] On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
    Rabier, Charles-Elie
    Berry, Vincent
    Stoltz, Marnus
    Santos, Joao D.
    Wang, Wensheng
    Glaszmann, Jean-Christophe
    Pardi, Fabio
    Scornavacca, Celine
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (09)
  • [3] Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models
    Forster, JJ
    McDonald, JW
    Smith, PWF
    [J]. STATISTICS AND COMPUTING, 2003, 13 (02) : 169 - 177
  • [4] Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models
    Jonathan J. Forster
    John W. McDonald
    Peter W. F. Smith
    [J]. Statistics and Computing, 2003, 13 : 169 - 177
  • [5] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [6] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    [J]. MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [7] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301
  • [8] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    [J]. HUMAN HEREDITY, 2015, 80 (03) : 113 - 113
  • [9] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [10] Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny
    Mossel, Elchanan
    Vigoda, Eric
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (04): : 2215 - 2234