Markov Chain Monte Carlo for Exact Inference for Diffusions

被引:22
|
作者
Sermaidis, Giorgos [1 ]
Papaspiliopoulos, Omiros [2 ]
Roberts, Gareth O. [3 ]
Beskos, Alexandros [4 ]
Fearnhead, Paul [1 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YW, England
[2] Univ Pompeu Fabra, Dept Econ, Barcelona 08005, Spain
[3] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[4] UCL, Dept Stat Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
exact inference; exact simulation; Markov chain Monte Carlo; stochastic differential equation; transition density; LIKELIHOOD-BASED ESTIMATION; BAYESIAN-INFERENCE; MODELS; MULTIVARIATE; LANGEVIN;
D O I
10.1111/j.1467-9469.2012.00812.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. We develop exact Markov chain Monte Carlo methods for discretely sampled, directly and indirectly observed diffusions. The qualification exact' refers to the fact that the invariant and limiting distribution of the Markov chains is the posterior distribution of the parameters free of any discretization error. The class of processes to which our methods directly apply are those which can be simulated using the most general to date exact simulation algorithm. The article introduces various methods to boost the performance of the basic scheme, including reparametrizations and auxiliary Poisson sampling. We contrast both theoretically and empirically how this new approach compares to irreducible high frequency imputation, which is the state-of-the-art alternative for the class of processes we consider, and we uncover intriguing connections. All methods discussed in the article are tested on typical examples.
引用
收藏
页码:294 / 321
页数:28
相关论文
共 50 条
  • [1] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    [J]. SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [2] Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models
    Forster, JJ
    McDonald, JW
    Smith, PWF
    [J]. STATISTICS AND COMPUTING, 2003, 13 (02) : 169 - 177
  • [3] Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models
    Jonathan J. Forster
    John W. McDonald
    Peter W. F. Smith
    [J]. Statistics and Computing, 2003, 13 : 169 - 177
  • [4] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [5] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    [J]. MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [6] Irreducible Markov chain Monte Carlo schemes for partially observed diffusions
    Kalogeropoulos, Konstantinos
    Roberts, Gareth
    Dellaportas, Petros
    [J]. NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 216 - +
  • [7] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301
  • [8] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    [J]. HUMAN HEREDITY, 2015, 80 (03) : 113 - 113
  • [9] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [10] Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
    Livingstone, Samuel
    Girolami, Mark
    [J]. ENTROPY, 2014, 16 (06): : 3074 - 3102