Joint Inference of Microsatellite Mutation Models, Population History and Genealogies Using Transdimensional Markov Chain Monte Carlo

被引:39
|
作者
Wu, Chieh-Hsi [2 ]
Drummond, Alexei J. [1 ,2 ,3 ]
机构
[1] Univ Auckland, Dept Comp Sci, Auckland 1001, New Zealand
[2] Univ Auckland, Bioinformat Inst, Auckland 1001, New Zealand
[3] Univ Auckland, Allan Wilson Ctr Mol Ecol & Evolut, Auckland 1001, New Zealand
基金
美国国家科学基金会;
关键词
ELECTROPHORETICALLY DETECTABLE ALLELES; LIKELIHOOD APPROACH; BAYESIAN-INFERENCE; STEPWISE MUTATION; MIGRATION RATES; DNA-SEQUENCES; DROSOPHILA; EVOLUTION; REPEATS; TREES;
D O I
10.1534/genetics.110.125260
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular data to make coalescent and evolutionary inferences. Our implementation permits the application of existing non-parametric methods to microsatellite data. The implemented microsatellite models are based on the replication slippage mechanism and focus on three properties of microsatellite mutation: length dependency of mutation rate, mutational bias toward expansion or contraction, and number of repeat units changed in a single mutation event. We develop a new model that facilitates microsatellite model averaging and Bayesian model selection by transdimensional MCMC. With Bayesian model averaging, the posterior distributions of population history parameters are integrated across a set of microsatellite models and thus account for model uncertainty. Simulated data are used to evaluate our method in terms of accuracy and precision of theta estimation and also identification of the true mutation model. Finally we apply our method to a red colobus monkey data set as an example.
引用
收藏
页码:151 / U254
页数:27
相关论文
共 50 条
  • [1] Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
    Heck, Daniel W.
    Overstall, Antony M.
    Gronau, Quentin F.
    Wagenmakers, Eric-Jan
    [J]. STATISTICS AND COMPUTING, 2019, 29 (04) : 631 - 643
  • [2] Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
    Daniel W. Heck
    Antony M. Overstall
    Quentin F. Gronau
    Eric-Jan Wagenmakers
    [J]. Statistics and Computing, 2019, 29 : 631 - 643
  • [3] Transdimensional transformation based Markov chain Monte Carlo
    Das, Moumita
    Bhattacharya, Sourabh
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (01) : 87 - 138
  • [4] A geometric approach to transdimensional Markov chain Monte Carlo
    Petris, G
    Tardella, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 469 - 482
  • [5] Inference on microsatellite mutation processes in the invasive mite, Varroa destructor, using reversible jump Markov chain Monte Carlo
    Cornuet, JM
    Beaumont, MA
    Estoup, A
    Solignac, M
    [J]. THEORETICAL POPULATION BIOLOGY, 2006, 69 (02) : 129 - 144
  • [6] Bayesian analysis of the discovery process model using transdimensional Markov chain Monte Carlo
    Sinding-Larsen, R
    Xu, JZ
    [J]. GIS and Spatial Analysis, Vol 1and 2, 2005, : 1040 - 1045
  • [7] Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method
    Zhu, Dehan
    Gibson, Richard
    [J]. GEOPHYSICS, 2018, 83 (04) : R321 - R334
  • [8] Transdimensional Markov Chain Monte Carlo joint inversion of direct current resistivity and transient electromagnetic data
    Peng, Ronghua
    Yogeshwar, Pritam
    Liu, Yajun
    Hu, Xiangyun
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (02) : 1430 - 1443
  • [9] Joint Estimation of Pedigrees and Effective Population Size Using Markov Chain Monte Carlo
    Ko, Amy
    Nielsen, Rasmus
    [J]. GENETICS, 2019, 212 (03) : 855 - 868
  • [10] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196