IH-DTL design with modified KONUS beam dynamics for a synchrotron-based proton therapy system

被引:8
|
作者
Tang, Ruo [1 ,2 ,3 ,4 ]
Xing, Qingzi [1 ,2 ,3 ]
Zheng, Shuxin [1 ,2 ,3 ]
Guan, Xialing [1 ,2 ,3 ]
Tang, Chuanxiang [1 ,2 ,3 ]
Wang, Xuewu [1 ,2 ,3 ]
Shi, Jinshui [4 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, CN-100084 Beijing, Peoples R China
[2] Tsinghua Univ, Key Lab Particle & Radiat Imaging, Minist Educ, CN-100084 Beijing, Peoples R China
[3] Tsinghua Univ, Lab Adv Radiat Sources & Applicat, Beijing 100084, Peoples R China
[4] CAEP, Inst Fluid Phys, POB 919-106, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
IH-DTL; KONUS; Proton therapy; INJECTOR; LINAC;
D O I
10.1016/j.nima.2018.10.125
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A modified Kombinierte Null Grad Struktur (KONUS) beam dynamics for inter-digital H-mode (IH) drift tube linac (DTL) is proposed in this study. This modified KONUS beam dynamics, which is aperiodic and is suitable for a short (<1 m) DTL design, is applied to a dedicated 325 MHz IH-DTL design at Tsinghua University. The IH-DTL, which is utilized in the injector of a synchrotron-based proton therapy system, is divided into three sections, namely, rebunching (-80 degrees), 0 degrees acceleration, and debunching (10 degrees). It is slightly different from the conventional KONUS cavity, and no focusing magnets exist in the cavity to reduce the cost of fabrication. The presence of 21 gaps in the cavity can accelerate a 15 mA proton beam from 3 MeV to 7 MeV. The cavity is tapered to adjust the gap voltage distribution, and the inner diameter varies from 196.8 mm to 232.6 mm. A cavity length of 1 m has a theoretical power consumption of 151 kW, whereas the maximum surface electric field is 40 MV/m (2.3 Kp). A new design process, which is similar to alternating-phase focusing method, is proposed. Details of the design method and results are presented in this study.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 50 条
  • [21] SAPT:a synchrotron-based proton therapy facility in Shanghai
    Man-Zhou Zhang
    De-Ming Li
    Li-Ren Shen
    Hai-Rong Zhang
    Zhi-Ling Chen
    Han-Wen Du
    Ming Gu
    Rui Li
    De-Kang Liu
    Yue-Hu Pu
    Jun-Feng Yu
    Jian-Feng Chen
    Chu Chen
    Chun-Long Guo
    Hao Guo
    Ge-Yang Jiang
    Zhi-Qiang Jiang
    Lin Jin
    Wen-Jing Li
    Xiu-Fang Li
    Ye Lin
    Ming Liu
    Yong-Hao Liu
    Ya-Juan Liu
    Ming Lv
    Qing-Ru Mi
    Lian-Hua Ouyang
    Wei-Guo Shi
    Hang Shu
    Qi-Sheng Tang
    Kun Wang
    Zhi-Shan Wang
    Jun Wu
    Xiao-Bing Wu
    Jia-Qiang Xu
    Wen-Zhen Xu
    Chong-Xian Yin
    Cheng Yu
    Ren-Xian Yuan
    Qi-Bing Yuan
    Hai-Qun Zhang
    Miao Zhang
    Wen-Zhi Zhang
    Li-Ying Zhao
    Wei-Min Zhou
    Shou-Xian Fang
    Xi-Dong Sun
    Zhen-Tang Zhao
    Nuclear Science and Techniques, 2023, 34 (10) : 38 - 48
  • [22] Commissioning of a Novel Gantry-Less and Synchrotron-Based Proton Therapy System
    Pryanichnikov, Alexander
    Feldman, Jon
    Achkienasi, Alejandro
    Polyansky, Ilya
    Hillman, Yair
    Raskin, Stas
    Blumenfeld, Philip
    Popovtzer, Aron
    Marash, Michael
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4814 - S4816
  • [23] Physical design of a single-amplifier-driven proton linac injector for a synchrotron-based proton-therapy system in China
    Ma, P. F.
    Zheng, S. X.
    Yu, X. D.
    Lei, Y.
    Tang, R.
    Xing, Q. Z.
    Guan, X. L.
    Wang, X. W.
    Wang, C. P.
    Qiao, J.
    Xie, X. C.
    Yang, F.
    Pu, Y. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 900 : 32 - 39
  • [24] DTL cavity design and beam dynamics for a TAC linear proton accelerator
    A. Caliskan
    M. Yilmaz
    中国物理C, 2012, (02) : 167 - 172
  • [25] DTL cavity design and beam dynamics for a TAC linear proton accelerator
    Caliskan, A.
    Yilmaz, M.
    CHINESE PHYSICS C, 2012, 36 (02) : 167 - 172
  • [26] Stochastic model for predicting the temporal structure of the plan delivery in a synchrotron-based pencil beam scanning proton therapy system
    Burguete, J.
    Garcia-Cardosa, M.
    Antolin, E.
    Aguilar, B.
    Azcona, J. D.
    RADIATION PHYSICS AND CHEMISTRY, 2025, 226
  • [27] Investigation of beam delivery time for synchrotron-based proton pencil beam scanning system with novel scanning mode
    Liang, Xiaoying
    Liu, Chunbo
    Furutani, Keith M.
    Shen, Jiajian
    Bues, Martin
    Dougherty, Jingjing M.
    Li, Heng
    Parisi, Alessio
    Shrestha, Deepak K.
    Yaddanpudi, Sridhar
    Beltran, Chris
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (17):
  • [28] Dosimetric commissioning of a TPS for a synchrotron-based proton PBS delivery system
    Kragl, G.
    Boehlen, T.
    Carlino, A.
    Grevillot, L.
    Palmans, H.
    Elia, A.
    Knaeusl, B.
    Osorio, J.
    Dreindl, R.
    Hopfgartner, J.
    Vatnitsky, S.
    Stock, M.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S838 - S838
  • [29] Multiple Energy Extraction Reduces Beam Delivery Time for a Synchrotron-Based Proton Spot-Scanning System
    Younkin, J.
    Bues, M.
    Keole, S.
    Stoker, J.
    Shen, J.
    MEDICAL PHYSICS, 2017, 44 (06) : 2872 - 2872
  • [30] Multiple energy extraction reduces beam delivery time for a synchrotron-based proton spot-scanning system
    Younkin, James E.
    Bues, Martin
    Sio, Terence T.
    Liu, Wei
    Ding, Xiaoning
    Keole, Sameer R.
    Stoker, Joshua B.
    Shen, Jiajian
    ADVANCES IN RADIATION ONCOLOGY, 2018, 3 (03) : 412 - 420