Geometric engineering of Seiberg-Witten theories with massive hypermultiplets

被引:1
|
作者
Konishi, Y
Naka, M
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys, Meguro Ku, Tokyo 1538902, Japan
关键词
D O I
10.1016/j.nuclphysb.2003.09.033
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the geometric engineering of the N = 2 SU(2) gauge theories with 1 less than or equal to N-f less than or equal to 3 massive hypermultiplets in the vector representation. The set of partial differential equations satisfied by the periods of the Seiberg-Witten differential is obtained from the Picard-Fuchs equations of the local B-model. The differential equations and its solutions are consistent with the massless case. We show that the Yukawa coupling of the local A-model gives rise to the correct instanton expansion in the gauge theory, and propose the pattern of the distribution of the world-sheet instanton number from it. As a side result, we obtain the asymptotic form of the instanton amplitude in the gauge theories with massless hypermultiplets. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 36
页数:34
相关论文
共 50 条
  • [21] Matrix models vs. Seiberg-Witten/Whitham theories
    Chekhov, L
    Mironov, A
    PHYSICS LETTERS B, 2003, 552 (3-4) : 293 - 302
  • [22] Seiberg-Witten theories on ellipsoids (vol 09, 033, 2012)
    Hama, Naofumi
    Hosomichi, Kazuo
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [23] The geometric triangle for 3-dimensional Seiberg-Witten monopoles
    Carey, AL
    Marcolli, M
    Wang, BL
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (02) : 197 - 250
  • [24] Prepotential and the Seiberg-Witten theory
    Itoyama, H
    Morozov, A
    NUCLEAR PHYSICS B, 1997, 491 (03) : 529 - 573
  • [25] Review of Seiberg-Witten model
    O'Raifeartaigh, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (24-25): : 2987 - 3007
  • [26] Seiberg-Witten integrable systems
    Donagi, RY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, : 83 - 129
  • [27] Seiberg-Witten and Gromov invariants
    Taubes, CH
    GEOMETRY AND PHYSICS, 1997, 184 : 591 - 601
  • [28] The Seiberg-Witten map and topology
    Polychronakos, AP
    ANNALS OF PHYSICS, 2002, 301 (02) : 174 - 183
  • [29] Grafting Seiberg-Witten monopoles
    Jabuka, Stanislav
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (01): : 155 - 185
  • [30] On a system of Seiberg-Witten equations
    Massamba, F
    Thompson, G
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) : 643 - 665