Geometric engineering of Seiberg-Witten theories with massive hypermultiplets

被引:1
|
作者
Konishi, Y
Naka, M
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys, Meguro Ku, Tokyo 1538902, Japan
关键词
D O I
10.1016/j.nuclphysb.2003.09.033
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the geometric engineering of the N = 2 SU(2) gauge theories with 1 less than or equal to N-f less than or equal to 3 massive hypermultiplets in the vector representation. The set of partial differential equations satisfied by the periods of the Seiberg-Witten differential is obtained from the Picard-Fuchs equations of the local B-model. The differential equations and its solutions are consistent with the massless case. We show that the Yukawa coupling of the local A-model gives rise to the correct instanton expansion in the gauge theory, and propose the pattern of the distribution of the world-sheet instanton number from it. As a side result, we obtain the asymptotic form of the instanton amplitude in the gauge theories with massless hypermultiplets. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 36
页数:34
相关论文
共 50 条
  • [31] On the quantization of Seiberg-Witten geometry
    Nathan Haouzi
    Jihwan Oh
    Journal of High Energy Physics, 2021
  • [32] Singularities of the Seiberg-Witten map
    Bytsko, AG
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (01):
  • [33] The Seiberg-Witten map and supersymmetry
    Martin, C. P.
    Tamarit, C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11):
  • [34] On the quantization of Seiberg-Witten geometry
    Haouzi, Nathan
    Oh, Jihwan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [35] Testing Seiberg-Witten solution
    Losev, A
    Nekrassov, N
    Shatashvili, S
    STRINGS, BRANES AND DUALITIES, 1999, 520 : 359 - 372
  • [36] Quaternionic Seiberg-Witten equation
    Nitta, T
    Taniguchi, T
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) : 697 - 703
  • [37] Notes on Seiberg-Witten invariants
    Szabo, Z
    GEOMETRY AND PHYSICS, 1997, 184 : 59 - 70
  • [38] An introduction to Seiberg-Witten theory
    Ocampo, H
    GEOMETRIC METHODS FOR QUANTUM FIELD THEORY, 2001, : 421 - 448
  • [39] Seiberg-Witten geometries revisited
    Yuji Tachikawa
    Seiji Terashima
    Journal of High Energy Physics, 2011
  • [40] THE SEIBERG-WITTEN AND GROMOV INVARIANTS
    Taubes, Clifford Henry
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (02) : 221 - 238