Grafting Seiberg-Witten monopoles

被引:1
|
作者
Jabuka, Stanislav [1 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2003年 / 3卷 / 01期
关键词
Symplectic; 4-manifolds; Seiberg-Witten gauge theory; J-holomorphic curves;
D O I
10.2140/agt.2003.3.155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate that the operation of taking disjoint unions of J-holomorphic curves (and thus obtaining new J-holomorphic curves) has a Seiberg-Witten counterpart. The main theorem asserts that, given two solutions (A(i), psi(i)), i = 0, 1 of the Seiberg-Witten equations for the Spin(c)-structures W-Ei(+) E-i circle plus (E-i circle times K-1) (with certain restrictions), there is a solution (A, psi) of the Seiberg-Witten equations for the Spin(c)-structure W-E with E = E-0 circle times E-1, obtained by "grafting" the two solutions (A(i), psi(i)).
引用
收藏
页码:155 / 185
页数:31
相关论文
共 50 条
  • [1] Gluing Seiberg-Witten monopoles
    Safari, P
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2005, 13 (04) : 697 - 725
  • [2] Seiberg-Witten monopoles and the Thom conjecture
    Bennequin, D
    [J]. ASTERISQUE, 1997, (241) : 59 - 96
  • [3] Seiberg-Witten monopoles in three dimensions
    Carey, AL
    Wang, BL
    Zhang, RB
    McCarthy, J
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (03) : 213 - 228
  • [4] Heegaard splittings and Seiberg-Witten monopoles
    Lee, YJ
    [J]. GEOMETRY AND TOPOLOGY OF MANIFOLDS, 2005, 47 : 173 - 202
  • [5] On counting associative submanifolds and Seiberg-Witten monopoles
    Doan, Aleksander
    Walpuski, Thomas
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2019, 15 (04) : 1047 - 1133
  • [6] DIRAC MONOPOLES AND THE SEIBERG-WITTEN MONOPOLE EQUATIONS
    FREUND, PGO
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (06) : 2673 - 2674
  • [7] On the gauge invariant Lagrangian for Seiberg-Witten topological monopoles
    Gianvittorio, R
    Martin, I
    Restuccia, A
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (01) : 51 - 58
  • [8] Bogomol'nyi vortices from Seiberg-Witten monopoles
    Nasir, SM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (24): : 3905 - 3920
  • [9] Ellipsoid partition function from Seiberg-Witten monopoles
    Pan, Yiwen
    Peelaers, Wolfger
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [10] Ellipsoid partition function from Seiberg-Witten monopoles
    Yiwen Pan
    Wolfger Peelaers
    [J]. Journal of High Energy Physics, 2015