A Generalization of Costa's Entropy Power Inequality

被引:1
|
作者
Tamanini, Luca [1 ]
机构
[1] Bocconi Univ, Bocconi Inst Data Sci & Analyt, I-20136 Milan, Italy
关键词
Entropy; information theory; entropy power; Schrodinger problem; heat equation; METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; GEOMETRY; PROOF; CONCAVITY;
D O I
10.1109/TIT.2022.3159132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aim of this short note is to study Shannon's entropy power along entropic interpolations, thus generalizing Costa's concavity theorem. We shall provide two proofs of independent interest: the former by G-calculus, hence applicable to more abstract frameworks; the latter with an explicit remainder term, reminiscent of Villani (IEEE Trans. Inf. Theory, 2006), allowing us to characterize the case of equality.
引用
收藏
页码:4224 / 4229
页数:6
相关论文
共 50 条
  • [31] Weighted generalization of Rado's inequality and Popoviciu's inequality
    Wu, Shanhe
    Debnath, Lokenath
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 313 - 319
  • [32] Generalization and sharpness of the power means inequality and their applications
    Wu, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) : 637 - 652
  • [33] On Maligranda's generalization of Jensen's inequality
    Pecaric, JE
    Veljan, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (01) : 121 - 125
  • [34] Quantitative Stability of the Entropy Power Inequality
    Courtade, Thomas A.
    Fathi, Max
    Pananjady, Ashwin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5691 - 5703
  • [35] The Entropy Power Inequality for Quantum Systems
    Koenig, Robert
    Smith, Graeme
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1536 - 1548
  • [36] Multimode quantum entropy power inequality
    De Palma, G.
    Mari, A.
    Lloyd, S.
    Giovannetti, V.
    PHYSICAL REVIEW A, 2015, 91 (03)
  • [37] The entropy power inequality with quantum conditioning
    De Palma, Giacomo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (08)
  • [38] Renyi entropy power inequality and a reverse
    Li, Jiange
    STUDIA MATHEMATICA, 2018, 242 (03) : 303 - 319
  • [39] On a generalization of Busemann's intersection inequality
    Yaskin, Vladyslav
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [40] STEFFENSEN'S GENERALIZATION OF CEBYSEV INEQUALITY
    Awan, K. M.
    Pecaric, J.
    Rehman, Atiq Ur
    Journal of Mathematical Inequalities, 2015, 9 (01): : 155 - 163