A Generalization of Costa's Entropy Power Inequality

被引:1
|
作者
Tamanini, Luca [1 ]
机构
[1] Bocconi Univ, Bocconi Inst Data Sci & Analyt, I-20136 Milan, Italy
关键词
Entropy; information theory; entropy power; Schrodinger problem; heat equation; METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; GEOMETRY; PROOF; CONCAVITY;
D O I
10.1109/TIT.2022.3159132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aim of this short note is to study Shannon's entropy power along entropic interpolations, thus generalizing Costa's concavity theorem. We shall provide two proofs of independent interest: the former by G-calculus, hence applicable to more abstract frameworks; the latter with an explicit remainder term, reminiscent of Villani (IEEE Trans. Inf. Theory, 2006), allowing us to characterize the case of equality.
引用
收藏
页码:4224 / 4229
页数:6
相关论文
共 50 条
  • [21] On the generalization of Hormander's inequality
    Mughetti, M
    Nicola, F
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) : 509 - 537
  • [22] A generalization of Fisher's inequality
    Snevily, HS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 85 (01) : 120 - 125
  • [23] GENERALIZATION OF LEVINSON'S INEQUALITY
    Baloch, Imran Abbas
    Pecaric, Josip
    Praljak, Marjan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 571 - 586
  • [24] A GENERALIZATION OF HILBERT'S INEQUALITY
    Gao, Peng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 407 - 418
  • [25] A Generalization of Bonse's Inequality
    Farhadian, Reza
    Ponomarenko, Vadim
    AMERICAN MATHEMATICAL MONTHLY, 2024,
  • [26] A Generalization of Leuenberger's Inequality
    Lukarevski, Martin
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (01): : 88 - 89
  • [27] A GENERALIZATION OF MUIRHEAD'S INEQUALITY
    Paris, J. B.
    Vencovska, A.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 181 - 187
  • [28] A Generalization of the Concavity of Renyi Entropy Power
    Guo, Laigang
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    ENTROPY, 2021, 23 (12)
  • [29] A further generalization of Aczel's inequality and Popoviciu's inequality
    Wu, Shanhe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (03): : 565 - 573
  • [30] Exponential Generalization of Newman's Inequality and Klamkin's Inequality
    石焕南
    Northeastern Mathematical Journal, 2005, (04) : 431 - 438