On a generalization of Busemann's intersection inequality

被引:0
|
作者
Yaskin, Vladyslav [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Intersection body; Busemann's intersection inequality; Fourier transform; Interpolation of operators; BODIES;
D O I
10.1016/j.jfa.2024.110561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Busemann's intersection inequality gives an upper bound for the volume of the intersection body of a star body in terms of the volume of the body itself. Koldobsky, Paouris, and Zymonopoulou asked if there is a similar result for kintersection bodies. We solve this problem for star bodies that are close to the Euclidean ball in the Banach-Mazur distance. We also improve a bound obtained by Koldobsky, Paouris, and Zymonopoulou for general star bodies in the case when k is proportional to the dimension.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Functional Busemann Intersection Inequality
    Songjun Lv
    The Journal of Geometric Analysis, 2021, 31 : 6274 - 6291
  • [2] A Functional Busemann Intersection Inequality
    Lv, Songjun
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 6274 - 6291
  • [3] Busemann's intersection inequality in hyperbolic and spherical spaces
    Dann, Susanna
    Kim, Jaegil
    Yaskin, Vladyslav
    ADVANCES IN MATHEMATICS, 2018, 326 : 521 - 560
  • [4] On a generalization of Aczel's inequality
    Vong, SeakWeng
    APPLIED MATHEMATICS LETTERS, 2011, 24 (08) : 1301 - 1307
  • [5] A generalization of Markov's inequality
    Eisenberg, B
    Ghosh, BK
    STATISTICS & PROBABILITY LETTERS, 2001, 53 (01) : 59 - 65
  • [6] Generalization of a Pohst's inequality
    Battistoni, Francesco
    Molteni, Giuseppe
    JOURNAL OF NUMBER THEORY, 2021, 228 : 73 - 86
  • [7] GENERALIZATION OF LEVINSON'S INEQUALITY
    Baloch, Imran Abbas
    Pecaric, Josip
    Praljak, Marjan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 571 - 586
  • [8] A generalization of Fisher's inequality
    Snevily, HS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 85 (01) : 120 - 125
  • [9] On the generalization of Hormander's inequality
    Mughetti, M
    Nicola, F
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) : 509 - 537
  • [10] A GENERALIZATION OF BERNOULLI'S INEQUALITY
    De Carli, Laura
    Hudson, Steve M.
    MATEMATICHE, 2010, 65 (01): : 109 - 117