The glassy state, ideal glass transition, and second-order phase transition

被引:0
|
作者
Wu, JH [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA
关键词
glass transition; second-order phase transition; Ehrenfest relations; Prigogine-Defay ratio; analyticity;
D O I
10.1002/(SICI)1097-4628(19990103)71:1<143::AID-APP17>3.0.CO;2-I
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
According to Ehrenfest classification, the glass transition is a second-order phase transition. Controversy, however, remains due to the discrepancy between experiment and the Ehrenfest relations and thereby their prediction of unity of the Prigogine-Defay ratio in particular. In this article, we consider the case of ideal (equilibrium) glass and show that the glass transition may be described thermodynamically. At the transition, we obtain the following relations: dT/dP = Delta beta/Delta alpha and dT/dP = TV Delta alpha(1-Lambda)/Delta C-p-Delta C-v with Lambda = (alpha(g)beta(l)-alpha(l)beta(g))(2)/beta(l)beta(g)Delta alpha(2); dV/dP = V alpha(g)beta(l)-alpha(l)beta(g)/Delta alpha, dV/dP = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta alpha(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)); dV/dT = V(alpha(g)beta(l)-alpha(l)beta(g))/Delta beta and dV/dT = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta beta(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)). The Prigogine-Defay ratio is Pi = 1/1-(Delta C-v-Gamma)/Delta C-p with Gamma = TV(alpha(l)beta(g) - alpha(g)beta(l))(2)/beta(l)beta(g)Delta beta, instead of unity as predicted by the Ehrenfest relations. Dependent on the relative value of Delta C-V, and Gamma, the ratio may take a number equal to, larger or smaller than unity. The incorrect assumption of perfect differentiability of entropy at the transition, leading to the second Ehrenfest relation, is rectified to resolve the long-standing dilemma perplexing the nature of the glass transition. The relationships obtained in this work are in agreement with experimental findings. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [1] Glassy state, ideal glass transition, and second-order phase transition
    IBM Almaden Research Cent, San Jose, United States
    J Appl Polym Sci, 1 (143-150):
  • [2] Glass transition and creep of deformed elastomers as second-order phase transitions
    Vainshtein, E. F.
    Sokolovskii, A. A.
    Ukhova, E. M.
    Bandurina, V. A.
    Soap, Cosmetics, Chemical Specialties, 1994, 709
  • [3] SECOND-ORDER PHASE TRANSITION TO A HIGH CONDUCTIVITY STATE IN SEMICONDUCTING GLASSES
    BOER, KW
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1971, 5 (03): : 753 - &
  • [4] Love might be a second-order phase transition
    Solnyshkov, Dmitry
    Malpuech, Guillaume
    PHYSICS LETTERS A, 2022, 445
  • [5] ON SECOND-ORDER PHASE TRANSITION IN A FERMI SYSTEM
    WELLER, W
    PHYSICS LETTERS, 1965, 15 (01): : 35 - &
  • [6] Entanglement in a second-order quantum phase transition
    Vidal, J
    Palacios, G
    Mosseri, R
    PHYSICAL REVIEW A, 2004, 69 (02): : 4
  • [7] SECOND-ORDER PHASE TRANSITION AND EHRENFEST RELATIONS
    GRINDLAY, J
    CANADIAN JOURNAL OF PHYSICS, 1968, 46 (20) : 2253 - &
  • [8] Love might be a second-order phase transition
    Solnyshkov, Dmitry
    Malpuech, Guillaume
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 445
  • [9] Quantum degradation of a second-order phase transition
    Stishov, S. M.
    Petrova, A. E.
    Gavrilkin, S. Yu.
    Klinkova, L. A.
    PHYSICAL REVIEW B, 2015, 91 (14)
  • [10] SECOND-ORDER PHASE TRANSITION AND EHRENFEST RELATIONS
    GRINDLAY, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (03): : 400 - &