Variable selection in additive quantile regression using nonconcave penalty

被引:3
|
作者
Zhao, Kaifeng [1 ]
Lian, Heng [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
中国国家自然科学基金;
关键词
Additive models; oracle property; SCAD penalty; schwartz-type information criterion; VARYING-COEFFICIENT MODELS; ORACLE PROPERTIES; SHRINKAGE; LASSO;
D O I
10.1080/02331888.2016.1221954
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers variable selection in additive quantile regression based on group smoothly clipped absolute deviation (gSCAD) penalty. Although shrinkage variable selection in additive models with least-squares loss has been well studied, quantile regression is sufficiently different from mean regression to deserve a separate treatment. It is shown that the gSCAD estimator can correctly identify the significant components and at the same time maintain the usual convergence rates in estimation. Simulation studies are used to illustrate our method.
引用
收藏
页码:1276 / 1289
页数:14
相关论文
共 50 条
  • [21] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [22] Simultaneous variable selection and parametric estimation for quantile regression
    Xiong, Wei
    Tian, Maozai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 134 - 149
  • [23] Variable selection of the quantile varying coefficient regression models
    Weihua Zhao
    Riquan Zhang
    Yazhao Lv
    Jicai Liu
    [J]. Journal of the Korean Statistical Society, 2013, 42 : 343 - 358
  • [24] Variable selection of varying coefficient models in quantile regression
    Noh, Hohsuk
    Chung, Kwanghun
    Van Keilegom, Ingrid
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1220 - 1238
  • [25] Variable selection of the quantile varying coefficient regression models
    Zhao, Weihua
    Zhang, Riquan
    Lv, Yazhao
    Liu, Jicai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 343 - 358
  • [26] Variable selection in quantile regression via Gibbs sampling
    Alhamzawi, Rahim
    Yu, Keming
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (04) : 799 - 813
  • [27] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [28] Simultaneous variable selection and parametric estimation for quantile regression
    Wei Xiong
    Maozai Tian
    [J]. Journal of the Korean Statistical Society, 2015, 44 : 134 - 149
  • [29] Mixed effect modelling and variable selection for quantile regression
    Bar, Haim
    Booth, James G.
    Wells, Martin T.
    [J]. STATISTICAL MODELLING, 2023, 23 (01) : 53 - 80
  • [30] Binary quantile regression and variable selection: A new approach
    Aristodemou, Katerina
    He, Jian
    Yu, Keming
    [J]. ECONOMETRIC REVIEWS, 2019, 38 (06) : 679 - 694