Variable selection in additive quantile regression using nonconcave penalty

被引:3
|
作者
Zhao, Kaifeng [1 ]
Lian, Heng [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
中国国家自然科学基金;
关键词
Additive models; oracle property; SCAD penalty; schwartz-type information criterion; VARYING-COEFFICIENT MODELS; ORACLE PROPERTIES; SHRINKAGE; LASSO;
D O I
10.1080/02331888.2016.1221954
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers variable selection in additive quantile regression based on group smoothly clipped absolute deviation (gSCAD) penalty. Although shrinkage variable selection in additive models with least-squares loss has been well studied, quantile regression is sufficiently different from mean regression to deserve a separate treatment. It is shown that the gSCAD estimator can correctly identify the significant components and at the same time maintain the usual convergence rates in estimation. Simulation studies are used to illustrate our method.
引用
收藏
页码:1276 / 1289
页数:14
相关论文
共 50 条
  • [31] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [32] Simultaneous variable selection and parametric estimation for quantile regression
    Wei Xiong
    Maozai Tian
    [J]. Journal of the Korean Statistical Society, 2015, 44 : 134 - 149
  • [33] Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty
    Zhaoping Hong
    Yuao Hu
    Heng Lian
    [J]. Metrika, 2013, 76 : 887 - 908
  • [34] Additive models for quantile regression: Model selection and confidence bandaids
    Koenker, Roger
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2011, 25 (03) : 239 - 262
  • [35] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [36] Variable selection in functional additive regression models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (02) : 469 - 487
  • [37] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    [J]. Computational Statistics, 2019, 34 : 469 - 487
  • [38] Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty
    Hong, Zhaoping
    Hu, Yuao
    Lian, Heng
    [J]. METRIKA, 2013, 76 (07) : 887 - 908
  • [39] Variable selection in additive models via hierarchical sparse penalty
    Wen, Canhong
    Chen, Anan
    Wang, Xueqin
    Pan, Wenliang
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (01): : 162 - 194
  • [40] Generative Quantile Regression with Variability Penalty
    Wang, Shijie
    Shin, Minsuk
    Bai, Ray
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,