Binary quantile regression and variable selection: A new approach

被引:4
|
作者
Aristodemou, Katerina [1 ]
He, Jian [2 ]
Yu, Keming [1 ]
机构
[1] Brunel Univ London, Uxbridge, Middx, England
[2] Shihezi Univ, Shihezi, Xinjiang Weiwue, Peoples R China
关键词
Adaptive lasso; binary regression; iteratively reweighted least squares; quantile regression; smoothed maximum score estimator; variable selection; work trip mode choice; ADAPTIVE LASSO;
D O I
10.1080/07474938.2017.1417701
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a new estimation method for binary quantile regression and variable selection which can be implemented by an iteratively reweighted least square approach. In contrast to existing approaches, this method is computationally simple, guaranteed to converge to a unique solution and implemented with standard software packages. We demonstrate our methods using Monte-Carlo experiments and then we apply the proposed method to the widely used work trip mode choice dataset. The results indicate that the proposed estimators work well in finite samples.
引用
收藏
页码:679 / 694
页数:16
相关论文
共 50 条
  • [1] Bayesian variable selection in binary quantile regression
    Oh, Man-Suk
    Park, Eun Sug
    So, Beong-Soo
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 118 : 177 - 181
  • [2] A Bayesian variable selection approach to longitudinal quantile regression
    Kedia, Priya
    Kundu, Damitri
    Das, Kiranmoy
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 149 - 168
  • [3] A Bayesian variable selection approach to longitudinal quantile regression
    Priya Kedia
    Damitri Kundu
    Kiranmoy Das
    [J]. Statistical Methods & Applications, 2023, 32 : 149 - 168
  • [4] VARIABLE SELECTION IN QUANTILE REGRESSION
    Wu, Yichao
    Liu, Yufeng
    [J]. STATISTICA SINICA, 2009, 19 (02) : 801 - 817
  • [5] A novel Bayesian method for variable selection and estimation in binary quantile regression
    Dao, Mai
    Wang, Min
    Ghosh, Souparno
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 766 - 780
  • [6] Bayesian variable selection in quantile regression
    Yu, Keming
    Chen, Cathy W. S.
    Reed, Craig
    Dunson, David B.
    [J]. STATISTICS AND ITS INTERFACE, 2013, 6 (02) : 261 - 274
  • [7] Group Identification and Variable Selection in Quantile Regression
    Alkenani, Ali
    Msallam, Basim Shlaibah
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2019, 2019
  • [8] Interquantile shrinkage and variable selection in quantile regression
    Jiang, Liewen
    Bondell, Howard D.
    Wang, Huixia Judy
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 208 - 219
  • [9] Variable selection of varying coefficient models in quantile regression
    Noh, Hohsuk
    Chung, Kwanghun
    Van Keilegom, Ingrid
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1220 - 1238
  • [10] Simultaneous variable selection and parametric estimation for quantile regression
    Xiong, Wei
    Tian, Maozai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 134 - 149