Bayesian variable selection in binary quantile regression

被引:7
|
作者
Oh, Man-Suk [1 ]
Park, Eun Sug [2 ]
So, Beong-Soo [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul 120750, South Korea
[2] Texas A&M Transportat Inst, 3135 TAMU, College Stn, TX 77843 USA
基金
新加坡国家研究基金会;
关键词
Bayesian model selection; Bayes factor; Quantile regression; Markov chain Monte Carlo; WEIGHTED LIKELIHOOD RATIO; DISTRIBUTIONS; HYPOTHESES; MODEL;
D O I
10.1016/j.spl.2016.07.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a simple Bayesian variable selection method in binary quantile regression. Our method computes the Bayes factors of all candidate models simultaneously based on a single set of MCMC samples from a model that encompasses all candidate models. The method deals with multicollinearity problems and variable selection under constraints. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:177 / 181
页数:5
相关论文
共 50 条
  • [1] Bayesian variable selection in quantile regression
    Yu, Keming
    Chen, Cathy W. S.
    Reed, Craig
    Dunson, David B.
    [J]. STATISTICS AND ITS INTERFACE, 2013, 6 (02) : 261 - 274
  • [2] A novel Bayesian method for variable selection and estimation in binary quantile regression
    Dao, Mai
    Wang, Min
    Ghosh, Souparno
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 766 - 780
  • [3] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [4] A Bayesian variable selection approach to longitudinal quantile regression
    Kedia, Priya
    Kundu, Damitri
    Das, Kiranmoy
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 149 - 168
  • [5] A Bayesian variable selection approach to longitudinal quantile regression
    Priya Kedia
    Damitri Kundu
    Kiranmoy Das
    [J]. Statistical Methods & Applications, 2023, 32 : 149 - 168
  • [6] Binary quantile regression and variable selection: A new approach
    Aristodemou, Katerina
    He, Jian
    Yu, Keming
    [J]. ECONOMETRIC REVIEWS, 2019, 38 (06) : 679 - 694
  • [7] Bayesian variable selection and estimation in maximum entropy quantile regression
    Tu, Shiyi
    Wang, Min
    Sun, Xiaoqian
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (02) : 253 - 269
  • [8] Bayesian variable selection and estimation in binary quantile regression using global-local shrinkage priors
    Ma, Zhuanzhuan
    Han, Zifei
    Wang, Min
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [9] Bayesian variable selection and estimation in quantile regression using a quantile-specific prior
    Mai Dao
    Min Wang
    Souparno Ghosh
    Keying Ye
    [J]. Computational Statistics, 2022, 37 : 1339 - 1368
  • [10] Bayesian variable selection and estimation in quantile regression using a quantile-specific prior
    Dao, Mai
    Wang, Min
    Ghosh, Souparno
    Ye, Keying
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (03) : 1339 - 1368