Bayesian variable selection and estimation in binary quantile regression using global-local shrinkage priors

被引:0
|
作者
Ma, Zhuanzhuan [1 ]
Han, Zifei [2 ]
Wang, Min [3 ]
机构
[1] Univ TX Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX USA
[2] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
[3] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX 78249 USA
基金
中国国家自然科学基金;
关键词
Bayesian variable selection; horseshoe; normal-gamma; quantile regression; spike and slab; INFERENCE;
D O I
10.1080/03610918.2023.2293638
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we construct a Bayesian hierarchical model with global-local shrinkage priors for the regression coefficients, which includes the horseshoe prior and normal-gamma prior. This model is used for high-dimensional quantile regression models with dichotomous response data. We have developed an efficient sampling algorithm to generate posterior samplings for making posterior inference. We use a location-scale mixture representation of the asymmetric Laplace distribution. We assess the performance of the proposed methods through Monte Carlo simulations and two real-data applications in terms of parameter estimation and variable selection. Numerical results demonstrate that the proposed methods perform comparably with existing Bayesian methods under a variety of scenarios.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors
    Tang X.
    Xu X.
    Ghosh M.
    Ghosh P.
    [J]. Sankhya A, 2018, 80 (2): : 215 - 246
  • [2] Default Bayesian analysis with global-local shrinkage priors
    Bhadra, Anindya
    Datta, Jyotishka
    Polson, Nicholas G.
    Willard, Brandon
    [J]. BIOMETRIKA, 2016, 103 (04) : 955 - 969
  • [3] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [4] Bayesian variable selection in binary quantile regression
    Oh, Man-Suk
    Park, Eun Sug
    So, Beong-Soo
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 118 : 177 - 181
  • [5] A novel Bayesian method for variable selection and estimation in binary quantile regression
    Dao, Mai
    Wang, Min
    Ghosh, Souparno
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 766 - 780
  • [6] Bayesian sparse convex clustering via global-local shrinkage priors
    Kaito Shimamura
    Shuichi Kawano
    [J]. Computational Statistics, 2021, 36 : 2671 - 2699
  • [7] Bayesian sparse convex clustering via global-local shrinkage priors
    Shimamura, Kaito
    Kawano, Shuichi
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2671 - 2699
  • [8] Modeling Random Effects Using Global-Local Shrinkage Priors in Small Area Estimation
    Tang, Xueying
    Ghosh, Malay
    Ha, Neung Soo
    Sedransk, Joseph
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1476 - 1489
  • [9] Bayesian variable selection and estimation in quantile regression using a quantile-specific prior
    Mai Dao
    Min Wang
    Souparno Ghosh
    Keying Ye
    [J]. Computational Statistics, 2022, 37 : 1339 - 1368
  • [10] GENE NETWORK RECONSTRUCTION USING GLOBAL-LOCAL SHRINKAGE PRIORS
    Leday, Gwenael G. R.
    de Gunst, Mathisca C. M.
    Kpogbezan, Gino B.
    van der Vaart, Aad W.
    van Wieringen, Wessel N.
    van de Wiel, Mark A.
    [J]. ANNALS OF APPLIED STATISTICS, 2017, 11 (01): : 41 - 68