Spatial Channel Attention for Deep Convolutional Neural Networks

被引:33
|
作者
Liu, Tonglai [1 ,2 ,3 ,4 ,5 ,6 ]
Luo, Ronghai [7 ]
Xu, Longqin [1 ,2 ,3 ,4 ,5 ,6 ]
Feng, Dachun [1 ,2 ,3 ,4 ,5 ,6 ]
Cao, Liang [1 ,2 ,3 ,4 ,5 ,6 ]
Liu, Shuangyin [1 ,2 ,3 ,4 ,5 ,6 ]
Guo, Jianjun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China
[2] Zhongkai Univ Agr & Engn, Smart Agr Engn Technol Res Ctr, Guangdong Higher Educ Inst, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Guangzhou Key Lab Agr Prod Qual & Safety Traceabi, Guangzhou 510225, Peoples R China
[4] Zhongkai Univ Agr & Engn, Acad Smart Agr Engn Innovat, Guangzhou 510225, Peoples R China
[5] Guangdong Prov Key Lab Waterfowl Hlth Breeding, Guangzhou 510225, Peoples R China
[6] Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832000, Peoples R China
[7] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
attention mechanism; image classification; deep learning; cross-dimensional interaction;
D O I
10.3390/math10101750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the attention mechanism combining spatial and channel information has been widely used in various deep convolutional neural networks (CNNs), proving its great potential in improving model performance. However, this usually uses 2D global pooling operations to compress spatial information or scaling methods to reduce the computational overhead in channel attention. These methods will result in severe information loss. Therefore, we propose a Spatial channel attention mechanism that captures cross-dimensional interaction, which does not involve dimensionality reduction and brings significant performance improvement with negligible computational overhead. The proposed attention mechanism can be seamlessly integrated into any convolutional neural network since it is a lightweight general module. Our method achieves a performance improvement of 2.08% on ResNet and 1.02% on MobileNetV2 in top-one error rate on the ImageNet dataset.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions
    Di Zhu
    Yu Liu
    Xin Yao
    Manfred M. Fischer
    GeoInformatica, 2022, 26 : 645 - 676
  • [42] Deep Anchored Convolutional Neural Networks
    Huang, Jiahui
    Dwivedi, Kshitij
    Roig, Gemma
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 639 - 647
  • [43] Deep Unitary Convolutional Neural Networks
    Chang, Hao-Yuan
    Wang, Kang L.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 170 - 181
  • [44] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LVCSR
    Sainath, Tara N.
    Mohamed, Abdel-rahman
    Kingsbury, Brian
    Ramabhadran, Bhuvana
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 8614 - 8618
  • [45] Universality of deep convolutional neural networks
    Zhou, Ding-Xuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 787 - 794
  • [46] A Review on Deep Convolutional Neural Networks
    Aloysius, Neena
    Geetha, M.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 588 - 592
  • [47] Central Attention Mechanism for Convolutional Neural Networks
    Geng, Y.X.
    Wang, L.
    Wang, Z.Y.
    Wang, Y.G.
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1642 - 1648
  • [48] Fusion of Deep Convolutional Neural Networks
    Suchy, Robert
    Ezekiel, Soundararajan
    Cornacchia, Maria
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [49] Convergence of deep convolutional neural networks
    Xu, Yuesheng
    Zhang, Haizhang
    NEURAL NETWORKS, 2022, 153 : 553 - 563
  • [50] Visualization of Convolutional Neural Networks with Attention Mechanism
    Yuan, Meng
    Tie, Bao
    Lin, Dawei
    HUMAN CENTERED COMPUTING, HCC 2021, 2022, 13795 : 82 - 93