Spatial Channel Attention for Deep Convolutional Neural Networks

被引:33
|
作者
Liu, Tonglai [1 ,2 ,3 ,4 ,5 ,6 ]
Luo, Ronghai [7 ]
Xu, Longqin [1 ,2 ,3 ,4 ,5 ,6 ]
Feng, Dachun [1 ,2 ,3 ,4 ,5 ,6 ]
Cao, Liang [1 ,2 ,3 ,4 ,5 ,6 ]
Liu, Shuangyin [1 ,2 ,3 ,4 ,5 ,6 ]
Guo, Jianjun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China
[2] Zhongkai Univ Agr & Engn, Smart Agr Engn Technol Res Ctr, Guangdong Higher Educ Inst, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Guangzhou Key Lab Agr Prod Qual & Safety Traceabi, Guangzhou 510225, Peoples R China
[4] Zhongkai Univ Agr & Engn, Acad Smart Agr Engn Innovat, Guangzhou 510225, Peoples R China
[5] Guangdong Prov Key Lab Waterfowl Hlth Breeding, Guangzhou 510225, Peoples R China
[6] Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832000, Peoples R China
[7] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
attention mechanism; image classification; deep learning; cross-dimensional interaction;
D O I
10.3390/math10101750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the attention mechanism combining spatial and channel information has been widely used in various deep convolutional neural networks (CNNs), proving its great potential in improving model performance. However, this usually uses 2D global pooling operations to compress spatial information or scaling methods to reduce the computational overhead in channel attention. These methods will result in severe information loss. Therefore, we propose a Spatial channel attention mechanism that captures cross-dimensional interaction, which does not involve dimensionality reduction and brings significant performance improvement with negligible computational overhead. The proposed attention mechanism can be seamlessly integrated into any convolutional neural network since it is a lightweight general module. Our method achieves a performance improvement of 2.08% on ResNet and 1.02% on MobileNetV2 in top-one error rate on the ImageNet dataset.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Temporally Adaptive Common Spatial Patterns with Deep Convolutional Neural Networks
    Mousavi, Mahta
    de Sa, Virginia R.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 4533 - 4536
  • [22] Multiple Trajectory Prediction with Deep Temporal and Spatial Convolutional Neural Networks
    Strohbeck, Jan
    Belagiannis, Vasileios
    Mueller, Johannes
    Schreiber, Marcel
    Herrmann, Martin
    Wolf, Daniel
    Buchholz, Michael
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 1992 - 1998
  • [23] FDAM: full-dimension attention module for deep convolutional neural networks
    Cai, Silin
    Wang, Changping
    Ding, Jiajun
    Yu, Jun
    Fan, Jianping
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (04) : 599 - 610
  • [24] Deep Convolutional Neural Networks with Layer-wise Context Expansion and Attention
    Yu, Dong
    Xiong, Wayne
    Droppo, Jasha
    Stolcke, Andreas
    Ye, Guoli
    Li, Jinyu
    Zweig, Geoffrey
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 17 - 21
  • [25] MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition
    Yu, Yang
    Zhang, Yi
    Cheng, Zeyu
    Song, Zhe
    Tang, Chengkai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [26] Attention-guided deep convolutional neural networks for skin cancer classification
    Aggarwal, Arshiya
    Das, Nisheet
    Sreedevi, Indu
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
  • [27] The Costs and Benefits of Goal-Directed Attention in Deep Convolutional Neural Networks
    Luo X.
    Roads B.D.
    Love B.C.
    Computational Brain & Behavior, 2021, 4 (2) : 213 - 230
  • [28] FDAM: full-dimension attention module for deep convolutional neural networks
    Silin Cai
    Changping Wang
    Jiajun Ding
    Jun Yu
    Jianping Fan
    International Journal of Multimedia Information Retrieval, 2022, 11 : 599 - 610
  • [29] HAM: Hybrid attention module in deep convolutional neural networks for image classification
    Li, Guoqiang
    Fang, Qi
    Zha, Linlin
    Gao, Xin
    Zheng, Nenggan
    PATTERN RECOGNITION, 2022, 129
  • [30] Rega-Net: Retina Gabor Attention for Deep Convolutional Neural Networks
    Bao, Chun
    Cao, Jie
    Ning, Yaqian
    Cheng, Yang
    Hao, Qun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20