Spatial Channel Attention for Deep Convolutional Neural Networks

被引:33
|
作者
Liu, Tonglai [1 ,2 ,3 ,4 ,5 ,6 ]
Luo, Ronghai [7 ]
Xu, Longqin [1 ,2 ,3 ,4 ,5 ,6 ]
Feng, Dachun [1 ,2 ,3 ,4 ,5 ,6 ]
Cao, Liang [1 ,2 ,3 ,4 ,5 ,6 ]
Liu, Shuangyin [1 ,2 ,3 ,4 ,5 ,6 ]
Guo, Jianjun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China
[2] Zhongkai Univ Agr & Engn, Smart Agr Engn Technol Res Ctr, Guangdong Higher Educ Inst, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Guangzhou Key Lab Agr Prod Qual & Safety Traceabi, Guangzhou 510225, Peoples R China
[4] Zhongkai Univ Agr & Engn, Acad Smart Agr Engn Innovat, Guangzhou 510225, Peoples R China
[5] Guangdong Prov Key Lab Waterfowl Hlth Breeding, Guangzhou 510225, Peoples R China
[6] Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832000, Peoples R China
[7] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
attention mechanism; image classification; deep learning; cross-dimensional interaction;
D O I
10.3390/math10101750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the attention mechanism combining spatial and channel information has been widely used in various deep convolutional neural networks (CNNs), proving its great potential in improving model performance. However, this usually uses 2D global pooling operations to compress spatial information or scaling methods to reduce the computational overhead in channel attention. These methods will result in severe information loss. Therefore, we propose a Spatial channel attention mechanism that captures cross-dimensional interaction, which does not involve dimensionality reduction and brings significant performance improvement with negligible computational overhead. The proposed attention mechanism can be seamlessly integrated into any convolutional neural network since it is a lightweight general module. Our method achieves a performance improvement of 2.08% on ResNet and 1.02% on MobileNetV2 in top-one error rate on the ImageNet dataset.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Spatial-Channel-Temporal-Fused Attention for Spiking Neural Networks
    Cai, Wuque
    Sun, Hongze
    Liu, Rui
    Cui, Yan
    Wang, Jun
    Xia, Yang
    Yao, Dezhong
    Guo, Daqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [32] A Self-Attention-Based Deep Convolutional Neural Networks for IIoT Networks Intrusion Detection
    Alshehri, Mohammed S.
    Saidani, Oumaima
    Alrayes, Fatma S.
    Abbasi, Saadullah Farooq
    Ahmad, Jawad
    IEEE ACCESS, 2024, 12 : 45762 - 45772
  • [33] Neural Architecture Search for Convolutional Neural Networks with Attention
    Nakai, Kohei
    Matsubara, Takashi
    Uehara, Kuniaki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (02) : 312 - 321
  • [34] ESPACE: Accelerating Convolutional Neural Networks via Eliminating Spatial and Channel Redundancy
    Lin, Shaohui
    Ji, Rongrong
    Chen, Chao
    Huang, Feiyue
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1424 - 1430
  • [35] Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
    Fotiadou, Eleni
    Vullings, Rik
    FRONTIERS IN PEDIATRICS, 2020, 8
  • [36] CHIP: Channel-Wise Disentangled Interpretation of Deep Convolutional Neural Networks
    Cui, Xinrui
    Wang, Dan
    Wang, Z. Jane
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 4143 - 4156
  • [37] Optical flow estimation using channel attention mechanism and dilated convolutional neural networks
    Zhai, Mingliang
    Xiang, Xuezhi
    Zhang, Rongfang
    Lv, Ning
    El Saddik, Abdulmotaleb
    NEUROCOMPUTING, 2019, 368 : 124 - 132
  • [38] INTEGRATING SPECTRAL AND SPATIAL INFORMATION INTO DEEP CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL CLASSIFICATION
    Mei, Shaohui
    Ji, Jingyu
    Bi, Qianqian
    Hou, Junhui
    Du, Qian
    Li, Wei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5067 - 5070
  • [39] Using deep convolutional neural networks to forecast spatial patterns of Amazonian deforestation
    Ball, James G. C.
    Petrova, Katerina
    Coomes, David A.
    Flaxman, Seth
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (11): : 2622 - 2634
  • [40] Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions
    Zhu, Di
    Liu, Yu
    Yao, Xin
    Fischer, Manfred M.
    GEOINFORMATICA, 2022, 26 (04) : 645 - 676