Spatial Channel Attention for Deep Convolutional Neural Networks

被引:33
|
作者
Liu, Tonglai [1 ,2 ,3 ,4 ,5 ,6 ]
Luo, Ronghai [7 ]
Xu, Longqin [1 ,2 ,3 ,4 ,5 ,6 ]
Feng, Dachun [1 ,2 ,3 ,4 ,5 ,6 ]
Cao, Liang [1 ,2 ,3 ,4 ,5 ,6 ]
Liu, Shuangyin [1 ,2 ,3 ,4 ,5 ,6 ]
Guo, Jianjun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China
[2] Zhongkai Univ Agr & Engn, Smart Agr Engn Technol Res Ctr, Guangdong Higher Educ Inst, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Guangzhou Key Lab Agr Prod Qual & Safety Traceabi, Guangzhou 510225, Peoples R China
[4] Zhongkai Univ Agr & Engn, Acad Smart Agr Engn Innovat, Guangzhou 510225, Peoples R China
[5] Guangdong Prov Key Lab Waterfowl Hlth Breeding, Guangzhou 510225, Peoples R China
[6] Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832000, Peoples R China
[7] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
attention mechanism; image classification; deep learning; cross-dimensional interaction;
D O I
10.3390/math10101750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the attention mechanism combining spatial and channel information has been widely used in various deep convolutional neural networks (CNNs), proving its great potential in improving model performance. However, this usually uses 2D global pooling operations to compress spatial information or scaling methods to reduce the computational overhead in channel attention. These methods will result in severe information loss. Therefore, we propose a Spatial channel attention mechanism that captures cross-dimensional interaction, which does not involve dimensionality reduction and brings significant performance improvement with negligible computational overhead. The proposed attention mechanism can be seamlessly integrated into any convolutional neural network since it is a lightweight general module. Our method achieves a performance improvement of 2.08% on ResNet and 1.02% on MobileNetV2 in top-one error rate on the ImageNet dataset.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Spatial Pyramid Attention for Deep Convolutional Neural Networks
    Ma, Xu
    Guo, Jingda
    Sansom, Andrew
    McGuire, Mara
    Kalaani, Andrew
    Chen, Qi
    Tang, Sihai
    Yang, Qing
    Fu, Song
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3048 - 3058
  • [2] Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
    Yang, Hua
    Yang, Ming
    He, Bitao
    Qin, Tao
    Yang, Jing
    ENTROPY, 2022, 24 (09)
  • [3] SPATIAL AND CHANNEL ATTENTION BASED CONVOLUTIONAL NEURAL NETWORKS FOR MODELING NOISY SPEECH
    Xu, Sirui
    Fosler-Lussier, Eric
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6625 - 6629
  • [4] Spatial and Channel Dimensions Attention Feature Transfer for Better Convolutional Neural Networks
    Tang, Jialiang
    Liu, Mingjin
    Jiang, Ning
    Yu, Wenxin
    Yang, Changzheng
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [5] Channel attention for quantum convolutional neural networks
    Budiutama, Gekko
    Daimon, Shunsuke
    Nishi, Hirofumi
    Kaneko, Ryui
    Ohtsuki, Tomi
    Matsushita, Yu-ichiro
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [6] A Symmetric Efficient Spatial and Channel Attention (ESCA) Module Based on Convolutional Neural Networks
    Liu, Huaiyu
    Zhang, Yueyuan
    Chen, Yiyang
    SYMMETRY-BASEL, 2024, 16 (08):
  • [7] Spatial Decomposition and Aggregation for Attention in Convolutional Neural Networks
    Zhu, Meng
    Min, Weidong
    Xiang, Hongyue
    Zha, Cheng
    Huang, Zheng
    Li, Longfei
    Fu, Qiyan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [8] Fire Detection based on Convolutional Neural Networks with Channel Attention
    Zhang, Xiaobo
    Qian, Kun
    Jing, Kaihe
    Yang, Jianwei
    Yu, Hai
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3080 - 3085
  • [9] A New Cyclic Spatial Attention Module for Convolutional Neural Networks
    Li Daihui
    Zeng Shangyou
    Li Wenhui
    Yang Lei
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN 2019), 2019, : 607 - 611
  • [10] Dual-channel deep graph convolutional neural networks
    Ye, Zhonglin
    Li, Zhuoran
    Li, Gege
    Zhao, Haixing
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7