A note on domination and independence-domination numbers of graphs

被引:0
|
作者
Milanic, Martin [1 ,2 ]
机构
[1] Univ Primorska, UP IAM, SI-6000 Koper, Slovenia
[2] Univ Primorska, UP FAMNIT, SI-6000 Koper, Slovenia
关键词
Vizing's conjecture; domination number; independence-domination number; weakly chordal graph; NP-completeness; hereditary graph class; IDD-perfect graph; SUBGRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Vizing's conjecture is true for graphs G satisfying gamma(i)(G) = gamma(G), where gamma(G) is the domination number of a graph G and gamma(i)(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I. The equality gamma(i)(G) = gamma(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether gamma(i)(G) = gamma(G) = 2 and of verifying whether gamma(i)(G) >= 2 are NP-complete, even if G is weakly chordal. We also initiate the study of the equality gamma(i) = gamma in the context of hereditary graph classes and exhibit two infinite families of graphs for which gamma(i) < gamma.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [31] The 2-domination and Roman domination numbers of grid graphs
    Rao, Michael
    Talon, Alexandre
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01):
  • [32] On the geodetic domination and domination numbers of some Cartesian product graphs
    Zhao, Min
    Wang, Qin
    ARS COMBINATORIA, 2019, 142 : 381 - 391
  • [33] On graphs with equal chromatic transversal domination and connected domination numbers
    Ayyaswamy, Singaraj Kulandaiswamy
    Natarajan, Chidambaram
    Venkatakrishnan, Yanamandram Balasubramanian
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 843 - 849
  • [34] Bipartite graphs with close domination and k-domination numbers
    Ekinci, Gulnaz Boruzanli
    Bujtas, Csilla
    OPEN MATHEMATICS, 2020, 18 : 873 - 885
  • [35] A NOTE ON GLOBAL DOMINATION IN GRAPHS
    Arumugam, S.
    Kala, R.
    ARS COMBINATORIA, 2009, 93 : 175 - 180
  • [36] On graphs with equal total domination and Grundy total domination numbers
    Dravec, Tanja
    Jakovac, Marko
    Kos, Tim
    Marc, Tilen
    AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 137 - 146
  • [37] A note on Roman domination in graphs
    Xing, Hua-Ming
    Chen, Xin
    Chen, Xue-Gang
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3338 - 3340
  • [38] On graphs with equal total domination and Grundy total domination numbers
    Tanja Dravec
    Marko Jakovac
    Tim Kos
    Tilen Marc
    Aequationes mathematicae, 2022, 96 : 137 - 146
  • [39] A note on Roman domination in graphs
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2010, 83 : 305 - 312
  • [40] A Note on Strong Domination in Graphs
    Harinarayanan, C. V. R.
    Ponnappan, C. Y.
    Subbiah, S. P.
    Sundareswaran, R.
    Swaminathan, V.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (01) : 91 - 100