A NOTE ON GLOBAL DOMINATION IN GRAPHS

被引:0
|
作者
Arumugam, S. [1 ]
Kala, R. [2 ]
机构
[1] Arulmigu Kalasalingam Coll Engn, Dept Math, Anand Nagar 626190, Krishnankoil, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli 627012, India
关键词
Domination; Domination Number; Global Domination Number; Domsaturation Number; Global Domsaturation Number; DOMSATURATION NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex in V - S is adjacent to at least one vertex in S. A global dominating set is a subset S of V which is a dominating set of both G as well as its complement (G) over bar. The domination number (global domination number) gamma(gamma(g)) of G is the minimum cardinality of a dominating set (global dominating set) of G. In this paper we obtain a characterization of bipartite graphs with gamma(g) = gamma + 1. We also characterize unicyclic graphs and bipartite graphs with gamma(g) = alpha(0) + 1, where alpha(0) is the vertex covering number of G.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [1] A note on Roman domination in graphs
    Xing, Hua-Ming
    Chen, Xin
    Chen, Xue-Gang
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3338 - 3340
  • [2] A note on Roman domination in graphs
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2010, 83 : 305 - 312
  • [3] A Note on Strong Domination in Graphs
    Harinarayanan, C. V. R.
    Ponnappan, C. Y.
    Subbiah, S. P.
    Sundareswaran, R.
    Swaminathan, V.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (01) : 91 - 100
  • [4] A note on double domination in graphs
    Cabrera-Martinez, Abel
    Alberto Rodriguez-Velazquez, Juan
    DISCRETE APPLIED MATHEMATICS, 2021, 300 : 107 - 111
  • [5] Note on domination and minus domination numbers in cubic graphs
    Chen, YJ
    Cheng, TCE
    Ng, CT
    Shan, EF
    APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1062 - 1067
  • [6] A note on domination and independence-domination numbers of graphs
    Milanic, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (01) : 89 - 97
  • [7] Global Roman domination in graphs
    Pushpam, P. Roushini Leely
    Padmapriea, S.
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 176 - 185
  • [8] GLOBAL METRO DOMINATION OF GRAPHS
    Narayankar, Kishori P.
    Saldanha, Denzil Jason
    Sherra, John
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 27 (02): : 233 - 247
  • [9] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [10] THE GLOBAL EQUITABLE DOMINATION IN GRAPHS
    Vaidya, S. K.
    Pandit, R. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 155 - 167