Physics-Informed Neural Networks for Quantum Eigenvalue Problems

被引:6
|
作者
Jin, Henry [1 ]
Mattheakis, Marios [1 ]
Protopapas, Pavlos [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
neural networks; eigenvalue; eigenfunction; differential equation;
D O I
10.1109/IJCNN55064.2022.9891944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Eigenvalue problems are critical to several fields of science and engineering. We expand on the method of using unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems. The obtained solutions are given in an analytical and differentiable form that identically satisfies the desired boundary conditions. The network optimization is data-free and depends solely on the predictions of the neural network. We introduce two physics-informed loss functions. The first, called ortho-loss, motivates the network to discover pair-wise orthogonal eigenfunctions. The second loss term, called norm-loss, requests the discovery of normalized eigenfunctions and is used to avoid trivial solutions. We find that embedding even or odd symmetries to the neural network architecture further improves the convergence for relevant problems. Lastly, a patience condition can be used to automatically recognize eigenfunction solutions. This proposed unsupervised learning method is used to solve the finite well, multiple finite wells, and hydrogen atom eigenvalue quantum problems.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    [J]. PHYSICS OF FLUIDS, 2024, 36 (07)
  • [32] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    [J]. ACTA NUMERICA, 2024, 33 : 633 - 713
  • [33] Surrogate modeling for Bayesian inverse problems based on physics-informed neural networks
    Li, Yongchao
    Wang, Yanyan
    Yan, Liang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [34] Physics-informed neural networks for friction-involved nonsmooth dynamics problems
    Li, Zilin
    Bai, Jinshuai
    Ouyang, Huajiang
    Martelli, Saulo
    Tang, Ming
    Yang, Yang
    Wei, Hongtao
    Liu, Pan
    Wei, Ronghan
    Gu, Yuantong
    [J]. NONLINEAR DYNAMICS, 2024, 112 (09) : 7159 - 7183
  • [35] Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
    Depina, Ivan
    Jain, Saket
    Valsson, Sigurdur Mar
    Gotovac, Hrvoje
    [J]. GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 21 - 36
  • [36] On Physics-Informed Neural Networks training for coupled hydro-poromechanical problems
    Millevoi, Caterina
    Spiezia, Nicolo
    Ferronato, Massimiliano
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 516
  • [37] Spectrally adapted physics-informed neural networks for solving unbounded domain problems
    Xia, Mingtao
    Boettcher, Lucas
    Chou, Tom
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [38] Robust quantum gates using smooth pulses and physics-informed neural networks
    Gungordu, Utkan
    Kestner, J. P.
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [39] Physics-informed neural networks: A deep learning framework for solving the vibrational problems
    Wang, Xusheng
    Zhang, Liang
    [J]. ADVANCES IN NANO RESEARCH, 2021, 11 (05) : 495 - 519
  • [40] Ensemble of physics-informed neural networks for solving plane elasticity problems with examples
    Mouratidou, Aliki D.
    Drosopoulos, Georgios A.
    Stavroulakis, Georgios E.
    [J]. ACTA MECHANICA, 2024,