Physics-Informed Neural Networks for Quantum Eigenvalue Problems

被引:9
|
作者
Jin, Henry [1 ]
Mattheakis, Marios [1 ]
Protopapas, Pavlos [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
neural networks; eigenvalue; eigenfunction; differential equation;
D O I
10.1109/IJCNN55064.2022.9891944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Eigenvalue problems are critical to several fields of science and engineering. We expand on the method of using unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems. The obtained solutions are given in an analytical and differentiable form that identically satisfies the desired boundary conditions. The network optimization is data-free and depends solely on the predictions of the neural network. We introduce two physics-informed loss functions. The first, called ortho-loss, motivates the network to discover pair-wise orthogonal eigenfunctions. The second loss term, called norm-loss, requests the discovery of normalized eigenfunctions and is used to avoid trivial solutions. We find that embedding even or odd symmetries to the neural network architecture further improves the convergence for relevant problems. Lastly, a patience condition can be used to automatically recognize eigenfunction solutions. This proposed unsupervised learning method is used to solve the finite well, multiple finite wells, and hydrogen atom eigenvalue quantum problems.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Physics-informed neural networks for friction-involved nonsmooth dynamics problems
    Zilin Li
    Jinshuai Bai
    Huajiang Ouyang
    Saulo Martelli
    Ming Tang
    Yang Yang
    Hongtao Wei
    Pan Liu
    Ronghan Wei
    Yuantong Gu
    Nonlinear Dynamics, 2024, 112 : 7159 - 7183
  • [42] Ensemble of physics-informed neural networks for solving plane elasticity problems with examples
    Mouratidou, Aliki D.
    Drosopoulos, Georgios A.
    Stavroulakis, Georgios E.
    ACTA MECHANICA, 2024, 235 (11) : 6703 - 6722
  • [43] Physics-informed neural networks for inverse problems in nano-optics and metamaterials
    Chen, Yuyao
    Lu, Lu
    Karniadakis, George Em
    Dal Negro, Luca
    OPTICS EXPRESS, 2020, 28 (08) : 11618 - 11633
  • [44] Application of Physics-Informed Neural Networks to the Solution of Dynamic Problems of the Theory of Elasticity
    O. S. Limarchenko
    M. V. Lavrenyuk
    Journal of Mathematical Sciences, 2025, 287 (2) : 367 - 379
  • [45] Benchmark problems for physics-informed neural networks: The Allen-Cahn equation
    Lee, Hyun Geun
    Hwang, Youngjin
    Nam, Yunjae
    Kim, Sangkwon
    Kim, Junseok
    AIMS MATHEMATICS, 2025, 10 (03): : 7319 - 7338
  • [46] Deep fuzzy physics-informed neural networks for forward and inverse PDE problems
    Wu, Wenyuan
    Duan, Siyuan
    Sun, Yuan
    Yu, Yang
    Liu, Dong
    Peng, Dezhong
    NEURAL NETWORKS, 2025, 181
  • [47] Robust quantum gates using smooth pulses and physics-informed neural networks
    Gungordu, Utkan
    Kestner, J. P.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [48] A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems
    Brevi, Lorenzo
    Mandarino, Antonio
    Prati, Enrico
    TECHNOLOGIES, 2024, 12 (10)
  • [49] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [50] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291