Hopf Bifurcations, Periodic Windows and Intermittency in the Generalized Lorenz Model

被引:6
|
作者
Wawrzaszek, Anna [1 ]
Krasinska, Agata [1 ]
机构
[1] Polish Acad Sci, Space Res Ctr, Bartycka 18 A, PL-00716 Warsaw, Poland
来源
关键词
Generalized Lorenz system; stability; bifurcation; intermittency; HYPERCHAOS; TRANSITION; DESIGN; CHAOS;
D O I
10.1142/S0218127419300428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present study, we analyze the dynamics of a four-dimensional generalized Lorenz system with one variable describing the profile of the magnetic field induced in a convected magnetized fluid. In particular, we identify the subcritical Hopf bifurcation, at which the dimension of the unstable manifold is increased or reduced by two. Moreover, the new four-dimensional system behavior depending on the control parameters is considered and bidirectional bifurcation structures are revealed. The results show the existence of several windows of nonchaotic variation (windows of order), in particular period-3 windows at the edge of which type I intermittency is observed.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Resonances in skew and reducible quasi-periodic Hopf bifurcations
    Takens, F
    Wagener, FOO
    NONLINEARITY, 2000, 13 (02) : 377 - 396
  • [32] SPONTANEOUS LINEARIZATION AND PERIODIC-SOLUTIONS IN HOPF AND SYMMETRICAL BIFURCATIONS
    CICOGNA, G
    GAETA, G
    PHYSICS LETTERS A, 1986, 116 (07) : 303 - 306
  • [33] Periodic and chaotic solutions of the generalized Lorenz equations
    Yu, M.Y.
    Yang, B.
    1996, (54):
  • [34] Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system
    Algaba, A.
    Dominguez-Moreno, M. C.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 328 - 343
  • [35] Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system
    Valenzuela, Luis Miguel
    Ble, Gamaliel
    Falconi, Manuel
    Guerrero, David
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (02) : 497 - 515
  • [36] Simplest normal forms of generalized high codimensional Hopf bifurcations
    Ding, Yu-Mei
    Zhang, Qi-Chang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31 (24): : 143 - 147
  • [37] Hopf Bifurcations in a Predator–Prey Model with an Omnivore
    Yongjun Li
    Valery G. Romanovski
    Qualitative Theory of Dynamical Systems, 2019, 18 : 1201 - 1224
  • [38] Hopf bifurcations in a Ricardo-Malthus model
    Zhou, Ming-Chun
    Liu, Zong-Yu
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2425 - 2432
  • [39] Andronov–Hopf Bifurcations in the Aris–Amundson Model
    V. I. Bykov
    S. B. Tsybenova
    M. G. Slin'ko
    Doklady Physical Chemistry, 2001, 378 : 134 - 137
  • [40] ON BIFURCATIONS OF THE LORENZ ATTRACTOR IN THE SHIMIZU-MORIOKA MODEL
    SHILNIKOV, AL
    PHYSICA D, 1993, 62 (1-4): : 338 - 346