Hopf Bifurcations, Periodic Windows and Intermittency in the Generalized Lorenz Model

被引:6
|
作者
Wawrzaszek, Anna [1 ]
Krasinska, Agata [1 ]
机构
[1] Polish Acad Sci, Space Res Ctr, Bartycka 18 A, PL-00716 Warsaw, Poland
来源
关键词
Generalized Lorenz system; stability; bifurcation; intermittency; HYPERCHAOS; TRANSITION; DESIGN; CHAOS;
D O I
10.1142/S0218127419300428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present study, we analyze the dynamics of a four-dimensional generalized Lorenz system with one variable describing the profile of the magnetic field induced in a convected magnetized fluid. In particular, we identify the subcritical Hopf bifurcation, at which the dimension of the unstable manifold is increased or reduced by two. Moreover, the new four-dimensional system behavior depending on the control parameters is considered and bidirectional bifurcation structures are revealed. The results show the existence of several windows of nonchaotic variation (windows of order), in particular period-3 windows at the edge of which type I intermittency is observed.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Periodic trajectories and Andronov-Hopf bifurcations in models of gene networks
    Golubyatnikov, VP
    Likhoshvai, VA
    Volokitin, EP
    Gaidov, YA
    Osipov, AF
    BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE II, 2006, : 405 - 414
  • [42] Properties of the phase space and bifurcations in the complex Lorenz model
    A. G. Vladimirov
    V. Yu. Toronov
    V. L. Derbov
    Technical Physics, 1998, 43 : 877 - 884
  • [43] Properties of the phase space and bifurcations in the complex Lorenz model
    Vladimirov, AG
    Toronov, VY
    Derbov, VL
    TECHNICAL PHYSICS, 1998, 43 (08) : 877 - 884
  • [44] Isolated periodic wave solutions arising from Hopf and Poincare bifurcations in a class of single species model
    Wang, Qinlong
    Xiong, Yu'e
    Huang, Wentao
    Yu, Pei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 311 : 59 - 80
  • [45] On bifurcations of Lorenz attractors in the Lyubimov-Zaks model
    Kazakov, Alexey
    CHAOS, 2021, 31 (09)
  • [46] Travelling waves and their bifurcations in the Lorenz-96 model
    van Kekem, Dirk L.
    Sterk, Alef E.
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 367 : 38 - 60
  • [47] ANALYTICAL INVESTIGATION OF THE HOPF-BIFURCATION IN THE LORENZ MODEL
    PADE, J
    RAUH, A
    TSAROUHAS, G
    PHYSICS LETTERS A, 1986, 115 (03) : 93 - 96
  • [48] HIGHER DIMENSIONAL TOPOLOGY AND GENERALIZED HOPF BIFURCATIONS FOR DISCRETE DYNAMICAL SYSTEMS
    Barge, Hector
    Sanjurjo, Jose M. R.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06) : 2585 - 2601
  • [49] Simplest normal forms of generalized codimension-two Hopf bifurcations
    Ding, Yu-Mei
    Zhang, Qi-Chang
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2008, 21 (06): : 594 - 599
  • [50] Generalized Liénard equations, Cyclicity and Hopf-Takens bifurcations
    Caubergh M.
    Françoise J.-P.
    Qualitative Theory of Dynamical Systems, 2004, 5 (2) : 195 - 222