Predicting Perovskite Bandgap and Solar Cell Performance with Machine Learning

被引:28
|
作者
Gok, Elif Ceren [1 ]
Yildirim, Murat Onur [1 ]
Haris, Muhammed P. U. [2 ]
Eren, Esin [3 ,4 ]
Pegu, Meenakshi [2 ]
Hemasiri, Naveen Harindu [2 ]
Huang, Peng [2 ]
Kazim, Samrana [2 ,5 ]
Oksuz, Aysegul Uygun [4 ]
Ahmad, Shahzada [2 ,5 ]
机构
[1] Eindhoven Univ Technol, Engn Fac, Dept Math & Comp Sci, NL-5612 AZ Eindhoven, Netherlands
[2] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[3] Suleyman Demirel Univ, Innovat Technol Applicat & Res Ctr, Dept Energy Technol, TR-32260 Isparta, Turkey
[4] Suleyman Demirel Univ, Fac Arts & Sci, Dept Chem, TR-32260 Isparta, Turkey
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
来源
SOLAR RRL | 2022年 / 6卷 / 02期
基金
欧盟地平线“2020”;
关键词
machine learning; optoelectrical properties; perovskite solar cells; perovskites; random forest model;
D O I
10.1002/solr.202100927
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Perovskites as semiconductors are of profound interest and arguably, the investigation on the distinctive perovskite composition is paramount to fabricate efficient devices and solar cells. The role of anion and cations and their impact on optoelectronic and photovoltaic properties is probed. A machine learning (ML) approach to predict the bandgap and power conversion efficiency (PCE) using eight different perovskites compositions is reported. The predicted solar cell parameters validate the experimental data. The adopted Random forest model presents a good match with high R-2 scores of >0.99 and >0.82 for predicted absorption and J-V datasets, respectively, and show minimal error rates with a precise prediction of bandgap and PCEs. The results suggest that the ML technique is an innovative approach to aid the preparation of the perovskite and can accelerate the commercial aspects of perovskite solar cells without fabricating working devices and minimize the fabrication steps and save cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Exploring device physics of perovskite solar cell via machine learning with limited samples
    Zhao, Shanshan
    Wang, Jie
    Guo, Zhongli
    Luo, Hongqiang
    Lu, Lihua
    Tian, Yuanyuan
    Jiang, Zhuoying
    Zhang, Jing
    Chen, Mengyu
    Li, Lin
    Li, Cheng
    JOURNAL OF ENERGY CHEMISTRY, 2024, 94 : 441 - 448
  • [42] Fast Exploring Literature by Language Machine Learning for Perovskite Solar Cell Materials Design
    Zhang, Lei
    Huang, Yiru
    Yan, Leiming
    Ge, Jinghao
    Ma, Xiaokang
    Liu, Zhike
    You, Jiaxue
    Jen, Alex K. Y.
    Frank Liu, Shengzhong
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (06)
  • [43] Machine learning analysis on stability of perovskite solar cells
    Odabasi, Cagla
    Yildirim, Ramazan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 205 (205)
  • [44] Improving the efficiency and stability of perovskite solar cell: Application of innovative machine learning algorithm
    Li, Haiyang
    Diao, Xinliu
    Ragab, Adham E.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 31 (27) : 9270 - 9296
  • [45] High performance wide bandgap perovskite solar cell with low VOC deficit less than 0.4 V
    Guo, Haikuo
    Hou, Fuhua
    Ning, Xuli
    Ren, Xiaoqi
    Yang, Haoran
    Liu, Rui
    Li, Tiantian
    Zhu, Chengjun
    Zhao, Ying
    Li, Wei
    Zhang, Xiaodan
    JOURNAL OF ENERGY CHEMISTRY, 2024, 91 : 313 - 322
  • [46] Passivation of Sodium Benzenesulfonate at the Buried Interface of a High-Performance Wide-Bandgap Perovskite Solar Cell
    La, Sijia
    Mo, Yaqi
    Li, Xing
    Feng, Xuzheng
    Chen, Xianggang
    Li, Zhuoxin
    Yang, Miao
    Ren, Dongxu
    Liu, Shuyi
    Cui, Xiaoxia
    Chen, Jieqiong
    Zhang, Zhao
    Yuan, Zhengbo
    Cai, Molang
    MATERIALS, 2024, 17 (07)
  • [47] Modeling of a high performance bandgap graded Pb-free HTM-free perovskite solar cell
    Jalalian, Davoud
    Ghadimi, Abbas
    Kiani, Azadeh
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2019, 87 (01):
  • [48] High performance wide bandgap perovskite solar cell with low VOC deficit less than 0.4 V
    Haikuo Guo
    Fuhua Hou
    Xuli Ning
    Xiaoqi Ren
    Haoran Yang
    Rui Liu
    Tiantian Li
    Chengjun Zhu
    Ying Zhao
    Wei Li
    Xiaodan Zhang
    Journal of Energy Chemistry , 2024, (04) : 313 - 322
  • [49] Rationalizing Performance Losses of Wide Bandgap Perovskite Solar Cells Evident in Data from the Perovskite Database
    Suchan, Klara
    Jacobsson, T. Jesper
    Rehermann, Carolin
    Unger, Eva L.
    Kirchartz, Thomas
    Wolff, Christian M.
    ADVANCED ENERGY MATERIALS, 2024, 14 (05)
  • [50] Auxiliary guidance manufacture and revealing potential mechanism of perovskite solar cell using machine learning
    Zhang, Quan
    Wang, Jianqi
    Liu, Guohua
    JOURNAL OF ENERGY CHEMISTRY, 2023, 86 : 146 - 157