Predicting Perovskite Bandgap and Solar Cell Performance with Machine Learning

被引:28
|
作者
Gok, Elif Ceren [1 ]
Yildirim, Murat Onur [1 ]
Haris, Muhammed P. U. [2 ]
Eren, Esin [3 ,4 ]
Pegu, Meenakshi [2 ]
Hemasiri, Naveen Harindu [2 ]
Huang, Peng [2 ]
Kazim, Samrana [2 ,5 ]
Oksuz, Aysegul Uygun [4 ]
Ahmad, Shahzada [2 ,5 ]
机构
[1] Eindhoven Univ Technol, Engn Fac, Dept Math & Comp Sci, NL-5612 AZ Eindhoven, Netherlands
[2] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[3] Suleyman Demirel Univ, Innovat Technol Applicat & Res Ctr, Dept Energy Technol, TR-32260 Isparta, Turkey
[4] Suleyman Demirel Univ, Fac Arts & Sci, Dept Chem, TR-32260 Isparta, Turkey
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
来源
SOLAR RRL | 2022年 / 6卷 / 02期
基金
欧盟地平线“2020”;
关键词
machine learning; optoelectrical properties; perovskite solar cells; perovskites; random forest model;
D O I
10.1002/solr.202100927
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Perovskites as semiconductors are of profound interest and arguably, the investigation on the distinctive perovskite composition is paramount to fabricate efficient devices and solar cells. The role of anion and cations and their impact on optoelectronic and photovoltaic properties is probed. A machine learning (ML) approach to predict the bandgap and power conversion efficiency (PCE) using eight different perovskites compositions is reported. The predicted solar cell parameters validate the experimental data. The adopted Random forest model presents a good match with high R-2 scores of >0.99 and >0.82 for predicted absorption and J-V datasets, respectively, and show minimal error rates with a precise prediction of bandgap and PCEs. The results suggest that the ML technique is an innovative approach to aid the preparation of the perovskite and can accelerate the commercial aspects of perovskite solar cells without fabricating working devices and minimize the fabrication steps and save cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Machine Learning Prediction of Organic-Inorganic Halide Perovskite Solar Cell Performance from Optical Properties
    Zhang, Ruiqi
    Motes, Brandon
    Tan, Shaun
    Lu, Yongli
    Shih, Meng-Chen
    Hao, Yilun
    Yang, Karen
    Srinivasan, Shreyas
    Bawendi, Moungi G.
    Bulovic, Vladimir
    ACS ENERGY LETTERS, 2025,
  • [22] Is machine learning redefining the perovskite solar cells?
    Parikh, Nishi
    Karamta, Meera
    Yadav, Neha
    Tavakoli, Mohammad Mahdi
    Prochowicz, Daniel
    Akin, Seckin
    Kalam, Abul
    Satapathi, Soumitra
    Yadav, Pankaj
    JOURNAL OF ENERGY CHEMISTRY, 2022, 66 : 74 - 90
  • [23] Machine learning will revolutionize perovskite solar cells
    Chen, Ziming
    Pan, Shuang
    Wang, Jing
    Min, Yonggang
    Chen, Yihuang
    Xue, Qifan
    INNOVATION, 2024, 5 (03):
  • [24] Is machine learning redefining the perovskite solar cells?
    Nishi Parikh
    Meera Karamta
    Neha Yadav
    Mohammad Mahdi Tavakoli
    Daniel Prochowicz
    Seckin Akin
    Abul Kalam
    Soumitra Satapathi
    Pankaj Yadav
    Journal of Energy Chemistry, 2022, 66 (03) : 74 - 90
  • [25] Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning
    Kumar, Anjan
    Singh, Sangeeta
    Mohammed, Mustafa K. A.
    Sharma, Dilip Kumar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (07):
  • [26] Interfacial Work Function Modulation of Wide Bandgap Perovskite Solar Cell for Efficient Perovskite/CIGS Tandem Solar Cell
    Liu, Pingping
    Li, Wenhuan
    Li, Jiarui
    Wang, Ziyao
    Chen, Xia
    Yu, Shen
    Zheng, Xue
    Xie, Chen
    Tang, Zeguo
    Wu, Shengfan
    Li, Weimin
    Yang, Chunlei
    Zhang, Jie
    SMALL METHODS, 2025,
  • [27] Application of Machine Learning in Perovskite Solar Cell Crystal Size Distribution Analysis
    Chcn, Thomas
    Zhou, Yuchon
    Rafailovich, Miriam
    MRS ADVANCES, 2019, 4 (14) : 793 - 800
  • [28] Selecting an appropriate machine-learning model for perovskite solar cell datasets
    Mohamed M. Salah
    Zahraa Ismail
    Sameh Abdellatif
    Materials for Renewable and Sustainable Energy, 2023, 12 : 187 - 198
  • [29] Selecting an appropriate machine-learning model for perovskite solar cell datasets
    Salah, Mohamed M.
    Ismail, Zahraa
    Abdellatif, Sameh
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2023, 12 (03) : 187 - 198
  • [30] Application of Machine Learning in Perovskite Solar Cell Crystal Size Distribution Analysis
    Thomas Chen
    Yuchen Zhou
    Miriam Rafailovich
    MRS Advances, 2019, 4 : 793 - 800