Predicting Perovskite Bandgap and Solar Cell Performance with Machine Learning

被引:28
|
作者
Gok, Elif Ceren [1 ]
Yildirim, Murat Onur [1 ]
Haris, Muhammed P. U. [2 ]
Eren, Esin [3 ,4 ]
Pegu, Meenakshi [2 ]
Hemasiri, Naveen Harindu [2 ]
Huang, Peng [2 ]
Kazim, Samrana [2 ,5 ]
Oksuz, Aysegul Uygun [4 ]
Ahmad, Shahzada [2 ,5 ]
机构
[1] Eindhoven Univ Technol, Engn Fac, Dept Math & Comp Sci, NL-5612 AZ Eindhoven, Netherlands
[2] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[3] Suleyman Demirel Univ, Innovat Technol Applicat & Res Ctr, Dept Energy Technol, TR-32260 Isparta, Turkey
[4] Suleyman Demirel Univ, Fac Arts & Sci, Dept Chem, TR-32260 Isparta, Turkey
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
来源
SOLAR RRL | 2022年 / 6卷 / 02期
基金
欧盟地平线“2020”;
关键词
machine learning; optoelectrical properties; perovskite solar cells; perovskites; random forest model;
D O I
10.1002/solr.202100927
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Perovskites as semiconductors are of profound interest and arguably, the investigation on the distinctive perovskite composition is paramount to fabricate efficient devices and solar cells. The role of anion and cations and their impact on optoelectronic and photovoltaic properties is probed. A machine learning (ML) approach to predict the bandgap and power conversion efficiency (PCE) using eight different perovskites compositions is reported. The predicted solar cell parameters validate the experimental data. The adopted Random forest model presents a good match with high R-2 scores of >0.99 and >0.82 for predicted absorption and J-V datasets, respectively, and show minimal error rates with a precise prediction of bandgap and PCEs. The results suggest that the ML technique is an innovative approach to aid the preparation of the perovskite and can accelerate the commercial aspects of perovskite solar cells without fabricating working devices and minimize the fabrication steps and save cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Predicting Performance of Solar updraught Tower using Machine Learning Regression Model
    Patil, Snehal
    Dhoble, Ashwin
    Sathe, Tushar
    Thawkar, Vivek
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2024, 22 (05) : 825 - 843
  • [32] Physics-Informed Machine Learning with Data-Driven Equations for Predicting Organic Solar Cell Performance
    Khatua, Rudranarayan
    Das, Bibhas
    Mondal, Anirban
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (42) : 57467 - 57480
  • [33] Effect of Doping, Photodoping, and Bandgap Variation on the Performance of Perovskite Solar Cells
    Das, Basita
    Aguilera, Irene
    Rau, Uwe
    Kirchartz, Thomas
    ADVANCED OPTICAL MATERIALS, 2022, 10 (13):
  • [34] Integration of Microstructural Image Data into Machine Learning Models for Advancing High-Performance Perovskite Solar Cell Design
    Liu, Haotian
    Yang, Antai
    Zhong, Chengquan
    Zhu, Xu
    Meng, Hao
    Feng, Zhuo
    Tang, Jixin
    Yang, Chen
    Zhang, Jingzi
    Liu, Jiakai
    Hu, Kailong
    Lin, Xi
    ACS ENERGY LETTERS, 2025,
  • [35] Narrow bandgap perovskite solar cell degradation monitoring by spectroscopic ellipsometry
    Tumusange, Marie Solange
    Mainali, Madan K.
    Chen, Lei
    Song, Zhaoning
    Yan, Yanfa
    Podraza, Nikolas J.
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [36] Graded bandgap perovskite solar cells
    Onur Ergen
    S. Matt Gilbert
    Thang Pham
    Sally J. Turner
    Mark Tian Zhi Tan
    Marcus A. Worsley
    Alex Zettl
    Nature Materials, 2017, 16 (5) : 522 - 525
  • [37] Perovskite solar cell performance assessment
    Unger, Eva
    Paramasivam, Gopinath
    Abate, Antonio
    JOURNAL OF PHYSICS-ENERGY, 2020, 2 (04):
  • [38] Predicting and analyzing stability in perovskite solar cells: Insights from machine learning models and SHAP analysis
    Chen, Jiacheng
    Zhan, Yaohui
    Yang, Zhenhai
    Zang, Yue
    Yan, Wensheng
    Li, Xiaofeng
    MATERIALS TODAY ENERGY, 2025, 48
  • [39] Improving the efficiency and stability of perovskite solar cell: Application of innovative machine learning algorithm
    Li, Haiyang
    Diao, Xinliu
    Ragab, Adham E.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (27) : 9270 - 9296
  • [40] Exploring device physics of perovskite solar cell via machine learning with limited samples
    Shanshan Zhao
    Jie Wang
    Zhongli Guo
    Hongqiang Luo
    Lihua Lu
    Yuanyuan Tian
    Zhuoying Jiang
    Jing Zhang
    Mengyu Chen
    Lin Li
    Cheng Li
    Journal of Energy Chemistry, 2024, 94 (07) : 441 - 448