Predicting Perovskite Bandgap and Solar Cell Performance with Machine Learning

被引:23
|
作者
Gok, Elif Ceren [1 ]
Yildirim, Murat Onur [1 ]
Haris, Muhammed P. U. [2 ]
Eren, Esin [3 ,4 ]
Pegu, Meenakshi [2 ]
Hemasiri, Naveen Harindu [2 ]
Huang, Peng [2 ]
Kazim, Samrana [2 ,5 ]
Oksuz, Aysegul Uygun [4 ]
Ahmad, Shahzada [2 ,5 ]
机构
[1] Eindhoven Univ Technol, Engn Fac, Dept Math & Comp Sci, NL-5612 AZ Eindhoven, Netherlands
[2] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[3] Suleyman Demirel Univ, Innovat Technol Applicat & Res Ctr, Dept Energy Technol, TR-32260 Isparta, Turkey
[4] Suleyman Demirel Univ, Fac Arts & Sci, Dept Chem, TR-32260 Isparta, Turkey
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
来源
SOLAR RRL | 2022年 / 6卷 / 02期
基金
欧盟地平线“2020”;
关键词
machine learning; optoelectrical properties; perovskite solar cells; perovskites; random forest model;
D O I
10.1002/solr.202100927
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Perovskites as semiconductors are of profound interest and arguably, the investigation on the distinctive perovskite composition is paramount to fabricate efficient devices and solar cells. The role of anion and cations and their impact on optoelectronic and photovoltaic properties is probed. A machine learning (ML) approach to predict the bandgap and power conversion efficiency (PCE) using eight different perovskites compositions is reported. The predicted solar cell parameters validate the experimental data. The adopted Random forest model presents a good match with high R-2 scores of >0.99 and >0.82 for predicted absorption and J-V datasets, respectively, and show minimal error rates with a precise prediction of bandgap and PCEs. The results suggest that the ML technique is an innovative approach to aid the preparation of the perovskite and can accelerate the commercial aspects of perovskite solar cells without fabricating working devices and minimize the fabrication steps and save cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Predicting the bandgap and efficiency of perovskite solar cells using machine learning methods
    Khan, Asad
    Kandel, Jeevan
    Tayara, Hilal
    Chong, Kil To
    [J]. MOLECULAR INFORMATICS, 2024, 43 (02)
  • [2] Bandgap Prediction of Hybrid Organic–Inorganic Perovskite Solar Cell Using Machine Learning
    Debmalya Sadhu
    Debasis De
    Devansh Dattatreya
    Arjun Deo
    Subir Gupta
    [J]. Journal of The Institution of Engineers (India): Series D, 2024, 105 (2) : 795 - 801
  • [3] Machine learning for perovskite solar cell design
    Hui, Zhan
    Wang, Min
    Yin, Xiang
    Wang, Ya'nan
    Yue, Yunliang
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 226
  • [4] The role of machine learning in perovskite solar cell research
    Chen, Chen
    Maqsood, Ayman
    Jacobsson, T. Jesper
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [5] Machine Learning Approach for Predicting the Hole Mobility of the Perovskite Solar Cells
    Rashid, Md Al Mamunur
    Lee, Seul
    Kim, Kwang Ho
    Kim, Jaeoh
    Jeong, Keunhong
    [J]. ADVANCED THEORY AND SIMULATIONS, 2024, 7 (06)
  • [6] Predicting photovoltaic parameters of perovskite solar cells using machine learning
    Hui, Zhan
    Wang, Min
    Chen, Jialu
    Yin, Xiang
    Yue, Yunliang
    Lu, Jing
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (35)
  • [7] Predicting Perovskite Performance with Multiple Machine-Learning Algorithms
    Li, Ruoyu
    Deng, Qin
    Tian, Dong
    Zhu, Daoye
    Lin, Bin
    [J]. CRYSTALS, 2021, 11 (07)
  • [8] Spectral Splitting Solar Cells Consisting of a Mesoscopic Wide-Bandgap Perovskite Solar Cell and an Inverted Narrow-Bandgap Perovskite Solar Cell
    Ito, Kei
    Nonomura, Kazuteru
    Kan, Ryota
    Tada, Keishi
    Lin, Ching Chang
    Kinoshita, Takumi
    Bessho, Takeru
    Uchida, Satoshi
    Segawa, Hiroshi
    [J]. ACS OMEGA, 2023, 9 (02): : 3028 - 3034
  • [9] How Machine Learning Predicts and Explains the Performance of Perovskite Solar Cells
    Liu, Yiming
    Yan, Wensheng
    Han, Shichuang
    Zhu, Heng
    Tu, Yiteng
    Guan, Li
    Tan, Xinyu
    [J]. SOLAR RRL, 2022, 6 (06)
  • [10] Comment on 1.077 eV bandgap perovskite solar cell
    Kirk, Alexander P.
    [J]. OPTICS COMMUNICATIONS, 2024, 569