Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration

被引:15
|
作者
Song, Xiaoliang [1 ]
Li, Xianxian [2 ]
Wang, Fengyu [3 ]
Wang, Li [3 ]
Lv, Li [3 ]
Xie, Qing [3 ]
Zhang, Xu [3 ]
Shao, Xinzhong [3 ]
机构
[1] Hebei Med Univ, Dept Hand Surg, Shijiazhuang, Peoples R China
[2] Changzhi Med Coll, Dept Hematol Oncol, Heji Hosp, Changzhi, Peoples R China
[3] Third Hosp Hebei Med Univ, Dept Hand Surg, Shijiazhuang, Peoples R China
关键词
PLGA scaffold; 3D printing; protein; peptide decoration; bio-inspired; bone defect; AMORPHOUS CALCIUM-PHOSPHATE; SURFACE MODIFICATION; STEM-CELLS; HYDROXYAPATITE; FABRICATION; DIFFERENTIATION; NANOFIBERS; IMPLANTS; BEHAVIOR; PEPTIDE;
D O I
10.3389/fbioe.2022.832727
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: This study was aimed to investigate the effect of three dimensional (3D)printed poly lactide-co-glycolide (PLGA) scaffolds combined with Gly-Phe-Hyp-Gly-Arg (GFOGER) and bone morphogenetic protein 9 (BMP-9) on the repair of large bone defects.Methods: 3D printing method was used to produce PLGA scaffolds, and the sample was viewed by both optical microscopy and SEM, XRD analysis, water absorption and compressive strength analysis, etc. The rabbits were divided into six groups randomly and bone defect models were constructed (6 mm in diameter and 9 mm in depth): control group (n = 2), sham group (n = 4), model group (n = 4) and model + scaffold group (n = 4 rabbits for each group, 0%,2% and 4%). The rabbits were sacrificed at the 4th and 12th weeks after surgery, and the samples were collected for quantitative analysis of new bone mineral density by micro-CT, histopathological observation, immunohistochemistry and Western blot to detect the protein expression of osteoblast-related genes.Results: This scaffold presented acceptable mechanical properties and slower degradation rates. After surface modification with GFOGER peptide and BMP-9, the scaffold demonstrated enhanced new bone mineral deposition and density over the course of a 12 week in vivo study. Histological analysis and WB confirmed that this scaffold up-regulated the expression of Runx7, OCN, COL-1 and SP7, contributing to the noted uniform trabeculae formation and new bone regeneration.Conclusions: The application of this strategy in the manufacture of composite scaffolds provided extensive guidance for the application of bone tissue engineering.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Rosales-Ibanez, Raul
    Viera-Ruiz, Alejandro Emmanuel
    Cauich-Rodriguez, Juan Valerio
    Carrillo-Escalante, Hugo Joel
    Gonzalez-Gonzalez, Arely
    Rodriguez-Martinez, Jesus Jiovanni
    Hernandez-Sanchez, Fernando
    POLYMER BULLETIN, 2023, 80 (03) : 2533 - 2552
  • [32] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Raúl Rosales-Ibáñez
    Alejandro Emmanuel Viera-Ruiz
    Juan Valerio Cauich-Rodríguez
    Hugo Joel Carrillo-Escalante
    Arely González-González
    Jesús Jiovanni Rodríguez-Martínez
    Fernando Hernández-Sánchez
    Polymer Bulletin, 2023, 80 : 2533 - 2552
  • [33] 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering
    Fahimipour, F.
    Rasoulianboroujeni, M.
    Dashtimoghadam, E.
    Khoshroo, K.
    Tahriri, M.
    Bastami, F.
    Lobner, D.
    Tayebi, L.
    DENTAL MATERIALS, 2017, 33 (11) : 1205 - 1216
  • [34] Development of 3D Bioactive Composite Scaffold for Bone Regeneration
    Li, J.
    Habibovic, P.
    Moroni, L.
    TISSUE ENGINEERING PART A, 2017, 23 : S90 - S90
  • [35] Bioinspired nanotopography on 3D printed tissue scaffold to impart mechanobactericidal and osteogenic activities
    Patil, Deepak
    Kumari, Sushma
    Chatterjee, Kaushik
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2023, 228
  • [36] 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration
    Wei, Jiawei
    Yan, Yan
    Gao, Jing
    Li, Yubao
    Wang, Ruili
    Wang, Jiexin
    Zou, Qin
    Zuo, Yi
    Zhu, Meifang
    Li, Jidong
    BIOMATERIALS ADVANCES, 2022, 133
  • [37] Dual-Nozzle 3D Printed Nano-Hydroxyapatite Scaffold Loaded with Vancomycin Sustained-Release Microspheres for Enhancing Bone Regeneration
    Li, Jianyi
    Li, Keke
    Du, Yukun
    Tang, Xiaojie
    Liu, Chenjing
    Cao, Shannan
    Zhao, Baomeng
    Huang, Hai
    Zhao, Hongri
    Kong, Weiqing
    Xu, Tongshuai
    Shao, Cheng
    Shao, Jiale
    Zhang, Guodong
    Lan, Hongbo
    Xi, Yongming
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2023, 18 : 307 - 322
  • [38] Craniofacial Bone Regeneration Guided by 3D Printed Architecture
    Kengla, C.
    Kim, I.
    Cho, J.
    Yoo, J. J.
    Atala, A.
    Lee, S.
    TISSUE ENGINEERING PART A, 2016, 22 : S19 - S19
  • [39] Vascularized 3D printed scaffolds for promoting bone regeneration
    Yan, Yufei
    Chen, Hao
    Zhang, Hongbo
    Guo, Changjun
    Yang, Kai
    Chen, Kaizhe
    Cheng, Ruoyu
    Qian, Niandong
    Sandler, Niklas
    Zhang, Yu Shrike
    Shen, Haokai
    Qi, Jin
    Cui, Wenguo
    Deng, Lianfu
    BIOMATERIALS, 2019, 190 : 97 - 110
  • [40] 3D printed magnetoactive nanocomposite scaffolds for bone regeneration
    Kaviani, Yeganeh
    Eslami, Hossein
    Ansari, Mojtaba
    Poursamar, Seyed Ali
    BIOMEDICAL MATERIALS, 2025, 20 (01)