3D printed magnetoactive nanocomposite scaffolds for bone regeneration

被引:0
|
作者
Kaviani, Yeganeh [1 ]
Eslami, Hossein [1 ]
Ansari, Mojtaba [1 ]
Poursamar, Seyed Ali [2 ]
机构
[1] Meybod Univ, Dept Biomed Engn, Meybod, Iran
[2] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomat & Tissue Engn, Esfahan, Iran
关键词
cobalt ferrite; forsterite coating; magnetic nanocomposite; poly caprolactone; 3D printing; bone regeneration; NANOPARTICLES; POLYCAPROLACTONE; COMPOSITE;
D O I
10.1088/1748-605X/ad9f04
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Simulating the natural cellular environment using magnetic stimuli could be a potential strategy to promote bone tissue regeneration. This study unveiled a novel 3D printed composite scaffold containing polycaprolactone (PCL) and cobalt ferrite/forsterite core-shell nanoparticles (CFF-NPs) to investigate physical, mechanical and biological properties of magnetoactive scaffold under static magnetic field. For this purpose, core-shell structure is synthesized through a two-step synthesis strategy in which cobalt ferrite nanoparticles are prepared via sol-gel combustion method and then are coated through sol-gel method with forsterite. The characterization regarding CFF-NPs reveals that Mg2SiO4-coated CoFe2O4 nanoparticles is successfully synthesized with a core-shell structure. Afterwards, CFF-NPs are embedded within the PCL with different percentages, ultimately 3D printed scaffolds were fabricated. The in vitro assessments demonstrated that the incorporated CFF-NPs are able to cause a decrease in contact angle which was responsible for modulating purposefully the degradation rate of PCL scaffold, resulting in providing the obligatory environment for bone growth. In addition, it was observed that scaffolds including PCL combined with CFF-NPs are susceptible to improve the mechanical performance of nanocomposite scaffolds, up to a certain concentration (50% CFF-NPs and 50% PCL) with compressive modulus of 42.5 MPa. Moreover, when being exposed to simulated body fluid (SBF) solution, hydroxyapatite deposition on the surface of scaffolds was observed. Thus, these compositions may be useful for improving the osteointegration between the implant and bone tissue after implantation. Finally, the simultaneous effect of magnetic nanoparticles and magnetic field of 125 mT evaluated on cellular behavior of scaffolds. The results showed that the cell viability of all groups under magnetic field were better than that for standard condition. Likewise, SEM images of cultured cells on scaffolds confirmed that the combined effect of these factors could be lead to promote better cell adhesion, dispersion, and bone regeneration.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Vascularized 3D printed scaffolds for promoting bone regeneration
    Yan, Yufei
    Chen, Hao
    Zhang, Hongbo
    Guo, Changjun
    Yang, Kai
    Chen, Kaizhe
    Cheng, Ruoyu
    Qian, Niandong
    Sandler, Niklas
    Zhang, Yu Shrike
    Shen, Haokai
    Qi, Jin
    Cui, Wenguo
    Deng, Lianfu
    BIOMATERIALS, 2019, 190 : 97 - 110
  • [2] Bone Regeneration Capability of 3D Printed Ceramic Scaffolds
    Kim, Ju-Won
    Yang, Byoung-Eun
    Hong, Seok-Jin
    Choi, Hyo-Geun
    Byeon, Sun-Ju
    Lim, Ho-Kyung
    Chung, Sung-Min
    Lee, Jong-Ho
    Byun, Soo-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (14) : 1 - 13
  • [3] Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration
    Karanth, Divakar
    Puleo, David
    Dawson, Dolph
    Holliday, L. S.
    Sharab, Lina
    CLINICAL AND EXPERIMENTAL DENTAL RESEARCH, 2023, 9 (02): : 398 - 408
  • [4] Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration
    Kundreckaite, Paula
    Sesok, Andzela
    Stonkus, Rimantas
    Gaidulis, Gediminas
    Romanczuk-Ruszuk, Eliza
    Pauk, Jolanta
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (04) : 182 - 189
  • [5] 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration
    Yang, Chen
    Huan, Zhiguang
    Wang, Xiaoya
    Wu, Chengtie
    Chang, Jiang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (02): : 608 - 616
  • [6] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [7] 3D Printed Scaffolds with Controlled Release of Dexamethasone for Bone Regeneration
    Costa, P.
    Puga, A.
    Concheiro, A.
    Busch, D.
    van Griensven, M.
    Alvarez-Lorenzo, C.
    TISSUE ENGINEERING PART A, 2014, 20 : S56 - S57
  • [8] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [9] 3D PRINTED IMMUNOMODULATORY SCAFFOLDS WITH CONTROLLED DRUG RELEASE FOR BONE REGENERATION
    Majrashi, Majed
    Ghaemmaghami, Amir
    Yang, Jing
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1162 - 1162
  • [10] In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration
    Boga, Joao C.
    Miguel, Sonia P.
    de Melo-Diogo, Duarte
    Mendonca, Antonio G.
    Louro, Ricardo O.
    Correia, Ilidio J.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 207 - 218