An Efficient Diminished-1 Modulo 2n+1 Multiplier Using Signed-Digit Number Representation

被引:0
|
作者
Tanaka, Yuuki [1 ]
Wei, Shugang [1 ]
机构
[1] Gunma Univ, Fac Sci & Technol, Div Mech Sci & Technol, Gunma 3730057, Japan
关键词
Modulo 2(n)+1 multipliers; diminished-1 number representation; residue number system; VLSI design;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new modulo 2(n) + 1 multiplier for the diminished-1 representation. Our algorithm generates inverted right perpendicularn/4inverted left perpendicular + 1 Signed-Digit( SD) numbers of n digits as the partial products and sums up these numbers by a multi-operand modulo 2(n) + 1 SD adder. We found that the proposed multiplier is smaller and faster than several proposed circuits.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Modular Multipliers Using a Modified Residue Addition Algorithm with Signed-Digit Number Representation
    Wei, Shugang
    [J]. IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 494 - 499
  • [42] Residue-Weighted Number Conversion for Moduli Set {22n-1, 22n+1-1, 2n} Using Signed-Digit Number
    Jiang, Changjun
    Wei, Shugang
    [J]. 2012 IEEE 10TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2012, : 9 - 12
  • [43] Residue-weighted number conversion using signed-digit number for moduli set {22n − 1, 22n+1 − 1, 2n}
    Changjun Jiang
    Shugang Wei
    [J]. Analog Integrated Circuits and Signal Processing, 2013, 77 : 105 - 112
  • [44] A high-speed binary to residue converter using a signed-digit number representation
    Syuto, M
    Satake, E
    Tanno, K
    Ishizuka, O
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2002, E85D (05) : 903 - 905
  • [45] Modulo (2p ± 1) multipliers using a three-operand modular addition and booth recoding based on signed-digit number arithmetic
    Wei, SG
    Shimizu, K
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V: BIO-MEDICAL CIRCUITS & SYSTEMS, VLSI SYSTEMS & APPLICATIONS, NEURAL NETWORKS & SYSTEMS, 2003, : 221 - 224
  • [46] Efficient methods in converting to modulo 2n+1 and 2n-1
    Manochehri, Kooroush
    Pourmozafari, Saadat
    Sadeghian, Babak
    [J]. THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 178 - +
  • [47] Handling zero in diminished-one modulo 2n+1 adders
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 2003, 90 (02) : 133 - 144
  • [48] A Fast Low-Power Modulo 2n+1 Multiplier Design
    Modugu, Rajashekhar
    Choi, Minsu
    Park, Nohpill
    [J]. I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 924 - +
  • [49] Low Power Modulo 2n+1 Multiplier Using Data Aware Adder Tree
    Sakthivel, R.
    Vanitha, M.
    Sanapala, Kishore
    Thirumalesh, K.
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS, 2015, 70 : 355 - 361
  • [50] A Modulo 2n+1 Multiplier with Double-LSB Encoding of residues
    Jaberipur, G.
    Alavi, H.
    [J]. 15TH CSI INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SYSTEMS (CADS 2010), 2010, : 147 - 150