Residue-Weighted Number Conversion for Moduli Set {22n-1, 22n+1-1, 2n} Using Signed-Digit Number

被引:0
|
作者
Jiang, Changjun [1 ]
Wei, Shugang [1 ]
机构
[1] Gunma Univ, Dept Prod Sci & Technol, Hon Tyo 29-1, Ota 3730057, Japan
关键词
REPRESENTATION; CONVERTERS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By introducing a signed-digit (SD) number arithmetic into a residue number system (RNS), arithmetic operations can be performed efficiently. In this paper, a new residue-to-binary conversion algorithm for three-moduli set {2(2n) - 1, 2(2n+1) - 1, 2(n)} using the SD number residue addition is proposed. Based on the proposed algorithm, the converter can be designed with only four high-speed SD adders. The comparison of the proposed converter using SD number arithmetic with the converter using binary arithmetic yields more efficient both in terms of area and time.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [1] Residue-weighted number conversion using signed-digit number for moduli set {22n - 1, 22n+1 - 1, 2n}
    Jiang, Changjun
    Wei, Shugang
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2013, 77 (02) : 105 - 112
  • [2] Residue-weighted number conversion using signed-digit number for moduli set {22n − 1, 22n+1 − 1, 2n}
    Changjun Jiang
    Shugang Wei
    [J]. Analog Integrated Circuits and Signal Processing, 2013, 77 : 105 - 112
  • [3] RESIDUE-WEIGHTED NUMBER CONVERSION FOR MODULI SET {2n-1, 2n+1, 22n+1, 2n} USING SIGNED-DIGIT NUMBER
    Jiang, Changjun
    Wei, Shugang
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2013, 22 (01)
  • [4] A Residue to Binary Converter for a Balanced Moduli set {22n+1-1, 22n, 22n-1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY & UBI-MEDIA COMPUTING (ICAST-UMEDIA), 2013, : 211 - 215
  • [5] Residue-Weighted Number Conversion with Moduli Set {2p-1, 2p+1, 22p+1, 2p} Using Signed-Digit Number Arithmetic
    Jiang, Changjun
    Wei, Shugang
    [J]. PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES 2010), 2010, : 629 - 633
  • [6] Reverse converters for a new moduli set {22n-1, 2n, 22n+1}
    Mohan, P. V. Ananda
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (02) : 215 - 227
  • [7] A Modified RNS-to-Binary Converter Scheme for {22n+1-1, 22n+1, 22n-1} Moduli Set
    Bankas, Edem Kwedzo
    [J]. 2016 14TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2016,
  • [8] An Effective New CRT Based Reverse Converter for a Novel Moduli Set {22n+1-1, 22n+1,22n-1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    Cotofana, Sorin Dan
    [J]. PROCEEDINGS OF THE 2013 IEEE 24TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 13), 2013, : 142 - 146
  • [9] An Improved RNS Reverse Converter for the {22n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, K. A.
    Chaves, R.
    Sousa, L.
    Cotofana, S. D.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 2103 - 2106
  • [10] Weighted-to-residue and residue-to-weighted converters with three-moduli (2n-1, 2n, 2n+1) signed-digit architectures
    Chen, Shuangching
    Wei, Shugang
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 3365 - +